Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Discrete groups and the complex contact geometry of $ Sl(2,\mathbb{C})$


Author: Brendan Foreman
Journal: Trans. Amer. Math. Soc. 362 (2010), 4191-4200
MSC (2000): Primary 32M05; Secondary 11E57, 30F40, 57R17
DOI: https://doi.org/10.1090/S0002-9947-10-04972-X
Published electronically: February 12, 2010
MathSciNet review: 2608401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the vertical foliation of the standard complex contact structure on $ \Gamma\setminus Sl(2,\mathbb{C})$, where $ \Gamma$ is a discrete subgroup. We find that, if $ \Gamma$ is nonelementary, the vertical leaves on $ {\Gamma}\setminus Sl(2,\mathbb{C})$ are holomorphic but not regular. However, if $ \Gamma$ is Kleinian, then $ \Gamma\setminus Sl(2,\mathbb{C})$ contains an open, dense set on which the vertical leaves are regular, complete and biholomorphic to $ \mathbb{C}^*$. If $ \Gamma$ is a uniform lattice, the foliation is nowhere regular, although there are both infinitely many compact and infinitely many nonclosed leaves.


References [Enhancements On Off] (What's this?)

  • 1. A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983. MR 698777 (85d:22026)
  • 2. L. A. Best, On torsion-free discrete subgroups of $ PSl(2,\mathbb{C})$ with compact orbit space, Canadian J. Math. 23 (1971), 451-460. MR 0284542 (44:1767)
  • 3. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Birkhäuser, Boston, 2002. MR 1874240 (2002m:53120)
  • 4. D. E. Blair, A complex geodesic flow, Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14 (2007), 29-42. MR 2446789
  • 5. B. Foreman, Boothby-Wang fibrations on complex contact manifolds, Diff. Geom. Appl. 13 (2000), 179-196. MR 1783962 (2001g:53136)
  • 6. B. Foreman, Decompositions and the complex contact structures of $ Sl(2,\mathbb{C})$, Kyung. Math. J. 42 (2002), 351-367. MR 1942196 (2003j:53121)
  • 7. M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhäuser, Boston, 2001. MR 1792613 (2002m:57018)
  • 8. S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164-167. MR 0111061 (22:1925)
  • 9. H. B. Lawson, Foliations, Bull. Amer. Math. Soc. 30 (1974), 369-418. MR 0343289 (49:8031)
  • 10. B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, Heidelberg, 1988. MR 959135 (90a:30132)
  • 11. A. L. Onishchik, E. B. Vinberg (Eds.), Lie Groups and Lie Algebras II, Springer-Verlag, Berlin, Heidelberg, 2000. MR 1756406 (2001a:22001)
  • 12. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994. MR 1299730 (95j:57011)
  • 13. C. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202. MR 2350473
  • 14. A. Weinstein, On the hypothesis of Rabinowitz's periodic orbit theorems, J. Diff. Eq. 33 (1979), 353-358. MR 543704 (81a:58030b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32M05, 11E57, 30F40, 57R17

Retrieve articles in all journals with MSC (2000): 32M05, 11E57, 30F40, 57R17


Additional Information

Brendan Foreman
Affiliation: Department of Mathematics, John Carroll University, University Heights, Ohio 44118

DOI: https://doi.org/10.1090/S0002-9947-10-04972-X
Received by editor(s): March 20, 2008
Published electronically: February 12, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society