Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 

 

Harmonic differentials and infinite geodesic joining two punctures on a Riemann surface


Author: Thérèse Falliero
Journal: Trans. Amer. Math. Soc. 363 (2011), 3473-3488
MSC (2010): Primary 53C20, 53C22, 58A10; Secondary 58D27
Published electronically: February 10, 2011
MathSciNet review: 2775815
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a hyperbolic Riemann surface of finite volume. The harmonic dual form to an infinite geodesic joining two punctures on $ M$ is obtained in two different ways. First of all, using the degeneration of hyperbolic Eisenstein series, it is made explicit in terms of these. Secondly, generalizing the construction of Kudla and Millson to the case of an infinite geodesic joining two punctures, we give an automorphic realization of this harmonic form.


References [Enhancements On Off] (What's this?)

  • 1. Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
  • 2. Thérèse Falliero, Décomposition spectrale de 1-formes différentielles sur une surface de Riemann et séries d’Eisenstein, Math. Ann. 317 (2000), no. 2, 263–284 (French, with English and French summaries). MR 1764237, 10.1007/s002080000093
  • 3. Thérèse Falliero, Dégénérescence de séries d’Eisenstein hyperboliques, Math. Ann. 339 (2007), no. 2, 341–375 (French, with English and French summaries). MR 2324723, 10.1007/s00208-007-0116-0
  • 4. John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR 0335789
  • 5. John D. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. Reine Angew. Math. 293/294 (1977), 143–203. MR 0506038
  • 6. P. Gérardin, Formes automorphes associées aux cycles géodésiques des surfaces de Riemann hyperboliques, Séminaire Bourbaki 562 (1980).
  • 7. G. Harder, On the cohomology of 𝑆𝐿(2,𝑂), Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 139–150. MR 0425019
  • 8. G. Harder, On the cohomology of discrete arithmetically defined groups, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 129–160. MR 0425018
  • 9. Dennis A. Hejhal, Theta functions, kernel functions, and Abelian integrals, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 129. MR 0372187
  • 10. Dennis A. Hejhal, A continuity method for spectral theory on Fuchsian groups, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 107–140. MR 803365
  • 11. Dennis A. Hejhal, Regular 𝑏-groups, degenerating Riemann surfaces, and spectral theory, Mem. Amer. Math. Soc. 88 (1990), no. 437, iv+138. MR 1052555, 10.1090/memo/0437
  • 12. Henryk Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana. [Library of the Revista Matemática Iberoamericana], Revista Matemática Iberoamericana, Madrid, 1995. MR 1325466
  • 13. Lizhen Ji, Spectral degeneration of hyperbolic Riemann surfaces, J. Differential Geom. 38 (1993), no. 2, 263–313. MR 1237486
  • 14. Lizhen Ji, The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z. 212 (1993), no. 3, 375–394. MR 1207299, 10.1007/BF02571664
  • 15. Jay Jorgenson, Asymptotic behavior of Faltings’s delta function, Duke Math. J. 61 (1990), no. 1, 221–254. MR 1068387, 10.1215/S0012-7094-90-06111-3
  • 16. Stephen S. Kudla and John J. Millson, Harmonic differentials and closed geodesics on a Riemann surface, Invent. Math. 54 (1979), no. 3, 193–211. MR 553218, 10.1007/BF01390229
  • 17. Stephen S. Kudla and John J. Millson, The Poincaré dual of a geodesic algebraic curve in a quotient of the 2-ball, Canad. J. Math. 33 (1981), no. 2, 485–499. MR 617638, 10.4153/CJM-1981-042-x
  • 18. Stephen S. Kudla and John J. Millson, Geodesic cyclics and the Weil representation. I. Quotients of hyperbolic space and Siegel modular forms, Compositio Math. 45 (1982), no. 2, 207–271. MR 651982
  • 19. Aaron Lebowitz, On the degeneration of Riemann surfaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 265–286. MR 0281908
  • 20. Barry Mazur, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 414, Springer, Berlin, 1973, pp. 277–294. Lecture Notes in Math., Vol. 317. MR 0429921
  • 21. David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 688651
  • 22. Kunio Obitsu, Non-completeness of Zograf-Takhtajan’s Kähler metric for Teichmüller space of punctured Riemann surfaces, Comm. Math. Phys. 205 (1999), no. 2, 405–420. MR 1712579, 10.1007/s002200050683
  • 23. Kunio Obitsu, The asymptotic behavior of Eisenstein series and a comparison of the Weil-Petersson and the Zograf-Takhtajan metrics, Publ. Res. Inst. Math. Sci. 37 (2001), no. 3, 459–478. MR 1855431
  • 24. Kunio Obitsu and Scott A. Wolpert, Grafting hyperbolic metrics and Eisenstein series, Math. Ann. 341 (2008), no. 3, 685–706. MR 2399166, 10.1007/s00208-008-0210-y
  • 25. K. Obitsu, Asymptotics of degenerating Eisenstein series. Arxiv:0801.3691(2008).
  • 26. R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of 𝑃𝑆𝐿(2,𝑅), Invent. Math. 80 (1985), no. 2, 339–364. MR 788414, 10.1007/BF01388610
  • 27. Hans Rademacher, Topics in analytic number theory, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman; Die Grundlehren der mathematischen Wissenschaften, Band 169. MR 0364103
  • 28. C. L. Siegel, Topics in complex function theory, Tracts in Mathematics Number 25, vol. 2, Wiley-Interscience, 1971.
  • 29. R. Wentworth, The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant, Comm. Math. Phys. 137 (1991), no. 3, 427–459. MR 1105425
  • 30. Scott A. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 2, 283–315. MR 905169
  • 31. Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, 10.1007/BF02100600
  • 32. Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, 10.1007/BF02100600
  • 33. Scott A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. (2) 139 (1994), no. 2, 239–291. MR 1274093, 10.2307/2946582

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C20, 53C22, 58A10, 58D27

Retrieve articles in all journals with MSC (2010): 53C20, 53C22, 58A10, 58D27


Additional Information

Thérèse Falliero
Affiliation: Laboratoire d’analyse non linéaire et géométrie (E-A 251), Université d’Avignon et des Pays de Vaucluse, F-84018 Avignon, France
Email: therese.falliero@univ-avignon.fr

DOI: http://dx.doi.org/10.1090/S0002-9947-2011-05224-4
Keywords: Harmonic differential, Eisenstein series
Received by editor(s): February 20, 2009
Published electronically: February 10, 2011
Article copyright: © Copyright 2011 American Mathematical Society