Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Antisymmetries of the CAR algebra


Author: P. J. Stacey; with an appendix by Jeffrey L. Boersema; N. Christopher Phillips
Journal: Trans. Amer. Math. Soc. 363 (2011), 6439-6452
MSC (2010): Primary 46L35
DOI: https://doi.org/10.1090/S0002-9947-2011-05263-3
Published electronically: July 25, 2011
MathSciNet review: 2833562
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a uniformly hyperfinite $ C^*$-algebra with infinitely many $ 2 \times 2$ matrix factors. It is shown that, up to conjugacy, there is a unique antisymmetry (involutory $ *$-antiautomorphism) of $ A$.


References [Enhancements On Off] (What's this?)

  • 1. Bruce Blackadar, Symmetries of the CAR algebra, Ann. Math. 131 (1990), 589-623. MR 1053492 (91i:46084)
  • 2. Jeffrey L. Boersema, Real $ C^*$-algebras, united $ K$-theory, and the Künneth formula, $ K$-Theory 26 (2002), 345-402. MR 1935138 (2004b:46072)
  • 3. Jeffrey L. Boersema, Real $ C^*$-algebras, united $ KK$-theory, and the Universal Coefficient Theorem, K-Theory 33 (2004), 107-149. MR 2131747 (2006d:46090)
  • 4. A.K. Bousfield, A classification of $ K$-local spectra, J. Pure Appl. Algebra 66 (1990), 121-163. MR 1075335 (92d:55003)
  • 5. Ola Bratteli, Inductive limits of finite dimensional $ C^*$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. MR 0312282 (47:844)
  • 6. M.Dadarlat and S. Eilers, On the classification of nuclear $ C^*$-algebras, Proc. London Math. Soc. (3) 85 (2002), 168-210. MR 1901373 (2003d:19006)
  • 7. T. Giordano, A classification of approximately finite real $ C^*$-algebras, J. Reine Angew Math. 385 (1988), 161-194. MR 931219 (89h:46078)
  • 8. K.R. Goodearl and D. Handelman, Classification of ring and $ C^*$-algebra direct limits of finite-dimensional semisimple real algebras, Mem. Amer. Math. Soc. 69 (1987), no. 372. MR 904013 (88k:46067)
  • 9. Beatrice J. Hewitt, On the homotopical classification of $ KO$-module spectra, Ph.D. thesis, University of Illinois at Chicago, 1996, ProQuest LLC. MR 2695203
  • 10. Kjeld Knudsen Jensen and Klaus Thomsen, Elements of $ KK$-theory, Birkhäuser, Boston, Basel, Berlin, 1991. MR 1124848 (94b:19008)
  • 11. G. G. Kasparov, Hilbert $ C^*$-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150. MR 587371 (82b:46074)
  • 12. H. Lin, Tracially AF $ C^*$-algebras, Trans. Amer. Math. Soc. 353 (2001), 693-722. MR 1804513 (2001j:46089)
  • 13. H. Lin, The tracial topological rank of $ C^*$-algebras, Proc. London Math. Soc. 83 (2001), 199-234. MR 1829565 (2002e:46063)
  • 14. H. Lin, An introduction to the classification of amenable $ C^*$-algebras, World Scientific, Singapore, 2001. MR 1884366 (2002k:46141)
  • 15. H. Lin, Stable approximate unitary equivalence of homomorphisms, J. Operator Theory 47 (2002), 343-378. MR 1911851 (2003c:46082)
  • 16. H. Lin, Classification of simple $ C^*$-algebras of tracial topological rank zero, Duke Math. J. 125 (2004), 91-119. MR 2097358 (2005i:46064)
  • 17. J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $ K$-functor, Duke Math. J. 55 (1987), 431-474. MR 894590 (88i:46091)
  • 18. C. Schochet, Topological methods for $ C^*$-algebras II: Geometric resolutions and the Künneth Formula, Pacific J. of Math. 98 (1982), 443-458. MR 650021 (84g:46105b)
  • 19. G. Skandalis, Une notion de nucléarité en $ K$-théorie (d'après J. Cuntz), K-Theory 1 (1988), 549-573. MR 953916 (90b:46131)
  • 20. P.J. Stacey, Involutory *-antiautomorphisms in a direct limit of matrix algebras, J. London Math Soc. (2) 30 (1984), 486-500. MR 810958 (88f:46118)
  • 21. P.J. Stacey, Real structure in direct limits of finite dimensional $ C^*$-algebras, J. London Math. Soc. (2) 35 (1987), 339-352. MR 881522 (88g:46083)
  • 22. P.J. Stacey, Stability of involutory *-antiautomorphisms in UHF-algebras, J. Operator Theory 24 (1990), 57-74. MR 1086544 (92g:46077)
  • 23. P.J. Stacey, Real structure in unital separable simple $ C^*$-algebras with tracial rank zero and with a unique tracial state, New York J. Math. 12 (2006), 1-5. MR 2259241 (2007h:46071)
  • 24. J. Boersema, Real $ C^*$-algebras, united $ KK$-theory, and the universal coefficient theorem, $ K$-Theory 33 (2004), 107-149. MR 2131747 (2006d:46090)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L35

Retrieve articles in all journals with MSC (2010): 46L35


Additional Information

P. J. Stacey
Affiliation: Department of Mathematics, La Trobe University, Victoria 3086, Australia
Email: P.Stacey@latrobe.edu.au

Jeffrey L. Boersema
Affiliation: Department of Mathematics, Seattle University, Seattle, Washington 98122
Email: boersema@seattleu.edu

N. Christopher Phillips
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: ncp@sdarkwing.uoregon.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05263-3
Received by editor(s): October 25, 2007
Received by editor(s) in revised form: November 24, 2009
Published electronically: July 25, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society