Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Torus manifolds with non-abelian symmetries

Author: Michael Wiemeler
Journal: Trans. Amer. Math. Soc. 364 (2012), 1427-1487
MSC (2010): Primary 57S15, 57S25
Published electronically: October 20, 2011
MathSciNet review: 2869182
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected compact non-abelian Lie group and $ T$ be a maximal torus of $ G$. A torus manifold with $ G$-action is defined to be a smooth connected closed oriented manifold of dimension $ 2\dim T$ with an almost effective action of $ G$ such that $ M^T\neq \emptyset $. We show that if there is a torus manifold $ M$ with $ G$-action, then the action of a finite covering group of $ G$ factors through $ \tilde {G}=\prod SU(l_i+1)\times \prod SO(2l_i+1)\times \prod SO(2l_i)\times T^{l_0}$. The action of $ \tilde {G}$ on $ M$ restricts to an action of $ \tilde {G}'=\prod SU(l_i+1)\times \prod SO(2l_i+1)\times \prod U(l_i)\times T^{l_0}$ which has the same orbits as the $ \tilde {G}$-action.

We define invariants of torus manifolds with $ G$-action which determine their $ \tilde {G}'$-equivariant diffeomorphism type. We call these invariants admissible 5-tuples. A simply connected torus manifold with $ G$-action is determined by its admissible 5-tuple up to a $ \tilde {G}$-equivariant diffeomorphism. Furthermore, we prove that all admissible 5-tuples may be realised by torus manifolds with $ \tilde {G}''$-action, where $ \tilde {G}''$ is a finite covering group of $ \tilde {G}'$.

References [Enhancements On Off] (What's this?)

  • 1. M. Aschbacher, On finite groups generated by odd transpositions. I, Math. Z. 127 (1972), 45-56 (English). MR 0310058 (46:9161)
  • 2. A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221 (French). MR 0032659 (11:326d)
  • 3. G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46. New York-London: Academic Press, 1972. MR 0413144 (54:1265)
  • 4. T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, 98. New York: Springer-Verlag, 1985 (English). MR 781344 (86i:22023)
  • 5. V.M. Buchstaber and T.E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series. 24. American Mathematical Society (AMS), 2002 (English). MR 1897064 (2003e:57039)
  • 6. M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451 (English). MR 1104531 (92i:52012)
  • 7. P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics. A Wiley-Interscience Publication. New York: John Wiley & Sons, 1978 (English). MR 507725 (80b:14001)
  • 8. F. Hirzebruch and P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990), no. 1-3, 309-343 (English). MR 1066570 (92a:57028)
  • 9. K. Jänich, Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand, Topology 5 (1966), 301-320 (German). MR 0202157 (34:2030)
  • 10. M. Kankaanrinta, Equivariant collaring, tubular neighbourhood and gluing theorems for proper Lie group actions, Algebr. Geom. Topol. 7 (2007), 1-27 (English). MR 2289802 (2008a:57034)
  • 11. S. Kuroki, Classification of quasitoric manifolds with codimension one extended actions, Preprint (2009) (English).
  • 12. -, Classification of torus manifolds with codimension one extended actions, Preprint (2009) (English).
  • 13. -, Characterization of homogeneous torus manifolds, Osaka J. Math. 47 (2010), no. 1, 285-299 (English). MR 2666135
  • 14. M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J., II. Ser. 51 (1999), no. 2, 237-265 (English). MR 1689995 (2000e:57058)
  • 15. M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), no. 3, 711-746 (English). MR 2283418 (2007j:57039)
  • 16. D. McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differ. Geom. 20 (1984), 267-277 (English). MR 772133 (86c:57036)
  • 17. J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies. No. 76. Princeton, N.J.: Princeton University Press and University of Tokyo Press, 1974 (English). MR 0440554 (55:13428)
  • 18. M. Mimura and H. Toda, Topology of Lie Groups I and II, Translations of Mathematical Monographs, Volume 91, AMS, 1991 (English). MR 1122592 (92h:55001)
  • 19. A. L. Onishchik, Topology of transitive transformation groups, Leipzig: Johann Ambrosius Barth, 1994 (English). MR 1266842 (95e:57058)
  • 20. P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Am. Math. Soc. 152 (1970), 531-559 (English). MR 0268911 (42:3808)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57S15, 57S25

Retrieve articles in all journals with MSC (2010): 57S15, 57S25

Additional Information

Michael Wiemeler
Affiliation: Department of Mathematics, University of Fribourg, Chemin du Musée 23, CH-1700 Fribourg, Switzerland
Address at time of publication: MPI for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany

Keywords: Quasitoric manifolds, blow ups, compact non-abelian Lie groups
Received by editor(s): December 11, 2009
Received by editor(s) in revised form: July 16, 2010, and September 10, 2010
Published electronically: October 20, 2011
Additional Notes: Part of the research for this paper was supported by SNF Grant No. 200021-117701
Article copyright: © Copyright 2011 American Mathematical Society