Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The diameter estimate and its application to CR Obata's Theorem on closed pseudohermitian $ (2n+1)$-manifolds


Authors: Shu-Cheng Chang and Chin-Tung Wu
Journal: Trans. Amer. Math. Soc. 364 (2012), 3349-3363
MSC (2010): Primary 32V05, 32V20; Secondary 53C56
DOI: https://doi.org/10.1090/S0002-9947-2012-05620-0
Published electronically: March 7, 2012
MathSciNet review: 2901216
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain a sharp lower bound estimate for diameters with respect to an adapted metric in closed pseudohermitian $ (2n+1)$-manifolds when a sharp lower bound estimate for the first positive eigenvalue of the sublaplacian is achieved. As a consequence, we confirm the CR Obata Conjecture on a closed pseudohermitian $ (2n+1)$-manifold with an extra condition on covariant derivatives of torsion.


References [Enhancements On Off] (What's this?)

  • [BD] E. Barletta and S. Dragomir, Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds, Kodai Math. J. 29 (2006), no. 3, 406-454. MR 2278775 (2007h:53060)
  • [CCC] S.-C. Chang, J.-H. Cheng and H.-L. Chiu, The fourth-order Q-curvature flow on a CR $ 3$-manifold, Indiana Univ. Math. J. 56 (2007), no. 4, 1793-1826. MR 2354700 (2009a:53111)
  • [CC1] S.-C. Chang and H.-L. Chiu, On the estimate of the first eigenvalue of a sublaplacian on a pseudohermitian $ 3$-manifold, Pacific J. Math 232 (2007), no. 2, 269-282. MR 2366354 (2008m:58065)
  • [CC2] S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR Obata's Theorem in a Pseudohermitian $ (2n+1)$-Manifold, J. Geom. Analysis, 19 (2009), 261-287. MR 2481962 (2010f:32034)
  • [CC3] S.-C. Chang and H.-L. Chiu, On the CR Analogue of Obata's Theorem in a Pseudohermitian $ 3$-Manifold, Math. Ann. 345 (2009), 33-51. MR 2520051 (2010i:32036)
  • [Ch] S. Y. Cheng, Eigenvalue Comparison theorems and its Geometric Application, Math. Z. 143 (1975), 289-297. MR 0378001 (51:14170)
  • [Chi] H.-L. Chiu, The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian $ 3$-manifold, AGAG 30 (2006), no. 1, 81-96. MR 2249615 (2007j:58034)
  • [Cho] W.-L. Chow, Uber System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,. Math. Ann. 117 (1939), 98-105. MR 0001880 (1:313d)
  • [CTW] S.-C. Chang, Jingzhu Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorem for the CR Heat Equation on Heisenberg groups $ \mathbf {H}^{n}$, Asian J. Math. 14 (2010), no. 1, 41-72. MR 2726594
  • [Ge] H. Geiges, Normal Contact Structures on 3-Manifolds, Tohoku Math. J. 49 (1997), 415-422. MR 1464186 (98h:53046)
  • [GL] C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex Domains, Duke Math. J. 57 (1988), 697-720. MR 975118 (90c:32031)
  • [Gr] A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Commum. Partial Differential Equations 10 (1985), no. 2,3, 191-217. MR 777049 (86f:58157)
  • [FH] C. Fefferman and K. Hirachi, Ambient Metric Construction of $ Q$-Curvature in Conformal and $ CR$ Geometries, Math. Res. Lett. 10, No. 5-6 (2003), 819-831. MR 2025058 (2005d:53044)
  • [HHL] Q. Han, R. Hardt, and F. H. Lin, Geometric Measure of Singular Sets of Elliptic Equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1425-1443. MR 1639155 (99h:35032a)
  • [Hi] K. Hirachi, Scalar Pseudo-hermitian Invariants and the Szegö Kernel on $ 3$-dimensional $ CR$ Manifolds, Lecture Notes in Pure and Appl. Math. 143, Dekker (1992), 67-76. MR 1201602 (93k:32036)
  • [KT] Y. Kamishima and T. Tsuboi, CR-Structures on Seifert Manifolds, Invent. Math. 104 (1991), 149-163. MR 1094049 (92c:53016)
  • [L] A. Lichnerowicz, Géometrie des groupes de transformations, Dunod, Pairs, 1958.
  • [Le] J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178. MR 926742 (89f:32034)
  • [Li] P. Li, Lecture notes on Geometric Analysis, 1996.
  • [LL] S.-Y. Li and H.-S. Luk, The sharp lower bound for the first positive eigenvalue of a sublaplacian on a pseudohermitian manifold, Proc. Am. Math. Soc. 132 (2004), no. 3, 789-798. MR 2019957 (2005c:58056)
  • [LY] P. Li and S.-T. Yau, On the Parabolic Kernel of the Schrődinger Operator, Acta Math. 156 (1985), 153-201. MR 834612 (87f:58156)
  • [O] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. MR 0142086 (25:5479)
  • [Ru] Michel Rumin, Formes Differentielles sur les Varietes de Contact, JDG 39 (1994), 281-330. MR 1267892 (95g:58221)
  • [U] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059-1078. MR 0464332 (57:4264)
  • [W] J.-P. Wang, Tsing-Hua Lecture Note, Hsinchu, Taiwan, 2005.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32V05, 32V20, 53C56

Retrieve articles in all journals with MSC (2010): 32V05, 32V20, 53C56


Additional Information

Shu-Cheng Chang
Affiliation: Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, Republic of China – and – Taida Institute for Mathematical Sciences (TIMS), National Taiwan University, Taipei 10617, Taiwan, Republic of China
Email: scchang@math.ntu.edu.tw

Chin-Tung Wu
Affiliation: Department of Applied Mathematics, National PingTung University of Education, PingTung, Taiwan 90003, Republic of China
Email: ctwu@mail.npue.edu.tw

DOI: https://doi.org/10.1090/S0002-9947-2012-05620-0
Keywords: Lichnerowicz-Obata Theorem, sublaplacian, CR Paneitz operator, pseudohermitian manifold, pseudohermitian Ricci curvature, pseudohermitian torsion.
Received by editor(s): February 3, 2010
Published electronically: March 7, 2012
Additional Notes: This research was supported in part by NSC
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society