Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Large affine spaces of non-singular matrices


Author: Clément de Seguins Pazzis
Journal: Trans. Amer. Math. Soc. 365 (2013), 2569-2596
MSC (2010): Primary 15A03, 15A30
DOI: https://doi.org/10.1090/S0002-9947-2012-05705-9
Published electronically: December 12, 2012
MathSciNet review: 3020109
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbb{K}$ be an arbitrary (commutative) field with at least three elements. It was recently proven that an affine subspace of $ \operatorname {M}_n(\mathbb{K})$ consisting only of non-singular matrices must have a dimension less than or equal to $ \binom {n}{2}$. Here, we classify, up to equivalence, the subspaces whose dimension equals $ \binom {n}{2}$. This is done by classifying, up to similarity, all the $ \binom {n}{2}$-dimensional linear subspaces of $ \operatorname {M}_n(\mathbb{K})$ consisting of matrices with no non-zero invariant vector, reinforcing a classical theorem of Gerstenhaber. Both classifications only involve the quadratic structure of the field $ \mathbb{K}$.


References [Enhancements On Off] (What's this?)

  • 1. M. D. Atkinson, S. Lloyd, Large spaces of matrices of bounded rank,
    Quart. J. Math. Oxford (2)
    31
    (1980)
    253-262. MR 587090 (82a:15015)
  • 2. M. D. Atkinson, S. Lloyd, Primitive spaces of matrices of bounded rank,
    J. Austral. Math. Soc.
    30
    (1981)
    473-482. MR 621563 (83a:15013)
  • 3. M. D. Atkinson, S. Lloyd, Primitive spaces of matrices of bounded rank II,
    J. Austral. Math. Soc.
    30
    (1983)
    306-315. MR 695915 (84h:15017)
  • 4. M. D. Atkinson, N. M. Stephens, Spaces of matrices of bounded rank,
    Quart. J. Math. Oxford (2)
    29
    (1978)
    221-223. MR 0480566 (58:725)
  • 5. J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables,
    Arch. Math.
    1
    (1949)
    282-287. MR 0029360 (10:586l)
  • 6. M. Gerstenhaber, On Nilalgebras and Linear Varieties of Nilpotent Matrices (I),
    Amer. J. Math.
    80
    (1958)
    614-622. MR 0096678 (20:3161)
  • 7. B. Mathes, M. Omladič, H. Radjavi, Linear spaces of nilpotent matrices,
    Linear Algebra Appl.
    149
    (1991)
    215-225. MR 1092879 (92g:15021)
  • 8. R. Quinlan, Spaces of matrices without non-zero eigenvalues in their field of definition, and a question of Szechtman,
    Linear Algebra Appl.
    434
    (2011)
    1580-1587. MR 2775767
  • 9. C. de Seguins Pazzis, Invitation aux formes quadratiques,
    Calvage & Mounet, Paris (2011).
  • 10. C. de Seguins Pazzis, On the matrices of given rank in a large subspace,
    Linear Algebra Appl.
    435-1
    (2011)
    147-151. MR 2782236
  • 11. C. de Seguins Pazzis, The affine preservers of non-singular matrices,
    Arch. Math.
    95
    (2010)
    333-342. MR 2727310 (2011j:15045)
  • 12. C. de Seguins Pazzis, The classification of large spaces of matrices with bounded rank,
    arXiv preprint
    http://arxiv.org/abs/1004.0298
  • 13. C. de Seguins Pazzis, The singular linear preservers of non-singular matrices,
    Linear Algebra Appl.
    433
    (2010)
    483-490. MR 2645099 (2011c:15081)
  • 14. V. N. Serezhkin, On linear transformations preserving nilpotency,
    Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk
    6
    (1985)
    46-50. MR 828449 (87e:15004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 15A03, 15A30

Retrieve articles in all journals with MSC (2010): 15A03, 15A30


Additional Information

Clément de Seguins Pazzis
Affiliation: Lycée Privé Sainte-Geneviève, 2, rue de l’École des Postes, 78029 Versailles Cedex, France
Email: dsp.prof@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2012-05705-9
Keywords: Affine subspaces, non-zero eigenvalues, alternate matrices, simultaneous triangularization, non-isotropic quadratic forms, Gerstenhaber theorem
Received by editor(s): February 26, 2011
Received by editor(s) in revised form: June 25, 2011, August 24, 2011, and September 14, 2011
Published electronically: December 12, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society