Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators


Author: Maurice A. de Gosson
Journal: Trans. Amer. Math. Soc. 365 (2013), 3287-3307
MSC (2010): Primary 47G30; Secondary 35Q40, 65P10, 35S05, 42B10
Published electronically: October 4, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Among all classes of pseudo-differential operators only the Weyl operators enjoy the property of symplectic covariance with respect to conjugation by elements of the metaplectic group. In this paper we show that there is, however, a weaker form of symplectic covariance for Shubin's $ \tau $-dependent operators, in which the intertwiners are no longer metaplectic, but are still invertible non-unitary operators. We also study the case of Born-Jordan operators, which are obtained by averaging the $ \tau $-operators over the interval $ [0,1]$ (such operators have recently been studied by Boggiatto and his collaborators, and by Toft). We show that covariance still holds for these operators with respect to a subgroup of the metaplectic group.


References [Enhancements On Off] (What's this?)

  • 1. P. Boggiatto, G. De Donno, A. Oliaro. Time-Frequency Representations of Wigner Type and Pseudo-Differential Operators, Transactions of the Amer. Math. Soc., 362(9) 4955-4981 (2010) MR 2645057
  • 2. P. Boggiatto, Bui Kien Cuong, G. De Donno, A. Oliaro. Weighted integrals of Wigner representations, J. Pseudo-Differ. Oper. Appl. 1(4) 401-415 (2010) MR 2747903 (2011m:42014)
  • 3. P. Boggiatto, G. De Donno, A. Oliaro. Hudson Theorem for $ \tau $-Wigner Transforms, Quaderni scientifici del Dipartimento di Matematica, Univeristà di Torino, Quaderno N. 1, 2010
  • 4. M. Born, P. Jordan. Zur Quantenmechanik, Z. Physik 34, 858-888 (1925)
  • 5. C. Conley, E. Zehnder. Morse-type index theory for flows and periodic solutions of Hamiltonian equations, Comm. Pure and Appl. Math. 37 (1984) 207-253 MR 733717 (86b:58021)
  • 6. H. G. Feichtinger. On a new Segal algebra, Monatsh. Math., 92 (4), 269-289 (1981) MR 643206 (83a:43002)
  • 7. H. G. Feichtinger. Modulation Spaces: Looking Back and Ahead. Sampl. Theory Signal Image Process. 5(2), 109-140 (2006) MR 2233968 (2007j:43003)
  • 8. G. B. Folland. Harmonic Analysis in Phase Space. Annals of Mathematics studies, Princeton University Press, Princeton, N.J. (1989) MR 983366 (92k:22017)
  • 9. M. de Gosson. Maslov indices on the metaplectic group $ \operatorname *{Mp}(n)$, Ann. Inst. Fourier 40(3), 537-555 (1990) MR 1091832 (92e:22027)
  • 10. M. de Gosson. Maslov Classes, Metaplectic Representation and Lagrangian Quantization, Mathematical Research 95, Wiley VCH (1997) MR 1449637 (98k:58097)
  • 11. M. de Gosson. The Weyl Representation of Metaplectic operators, Letters in Mathematical Physics 72 129-142(2005) MR 2154859 (2006h:81151)
  • 12. M. de Gosson. Symplectic Geometry and Quantum Mechanics, Birkhäuser, Basel, series ``Operator Theory: Advances and Applications'' (subseries: ``Advances in Partial Differential Equations''), Vol. 166 (2006) MR 2241188 (2007e:81050)
  • 13. M. de Gosson, S. de Gosson. An extension of the Conley-Zehnder Index, a product formula and an application to the Weyl representation of metaplectic operators, J. Math. Phys., 47(12), 123506, 15 pages (2006) MR 2285155 (2008c:53082)
  • 14. M. de Gosson. Metaplectic Representation, Conley-Zehnder Index, and Weyl Calculus on Phase Space, Rev. Math. Physics, 19(8) (2007) 1149-1188 MR 2362902 (2008k:81170)
  • 15. M. de Gosson. On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths, J. Math. Pures Appl. 91 (2009) 598-613 MR 2531557 (2010f:53145)
  • 16. M. de Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics, Birkhäuser, Basel (2011) MR 2827662
  • 17. M. de Gosson, F. Luef. Preferred Quantization Rules: Born-Jordan vs. Weyl; Applications to Phase Space Quantization, J. Pseudo-Differ. Oper. Appl. 2(1) (2011) 115-139 MR 2781145
  • 18. W. Heisenberg. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik, 33, 879-893 (1925) [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics, Dover Publications (1968)]
  • 19. L. Hörmander. The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, Berlin, 1985 MR 2304165 (2007k:35006)
  • 20. S. K. Kauffmann. Unambiguous quantization from the maximum classical correspondence that is self-consistent: The slightly stronger canonical commutation rule Dirac missed, Found. Phys. 41, 805-918 (2011) MR 2785351
  • 21. J. Leray. Lagrangian Analysis and Quantum Mechanics, a mathematical structure related to asymptotic expansions and the Maslov index (the MIT Press, Cambridge, Mass., 1981); translated from Analyse Lagrangienne RCP 25, Strasbourg Collège de France, 1976-1977 MR 644633 (83k:58081a)
  • 22. H. Reiter. Metaplectic Groups and Segal Algebras, Springer (1989) MR 1011671 (91k:43005)
  • 23. M. A. Shubin. Pseudodifferential Operators and Spectral Theory, Springer-Verlag (1987) [original Russian edition in Nauka, Moskva (1978)]
  • 24. E. M. Stein. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993) MR 1232192 (95c:42002)
  • 25. J. Toft. Multiplication properties in pseudo-differential calculus with small regularity on the symbols, J. Pseudo-Differ. Oper. Appl. 1, 101-138 (2010) MR 2679745 (2011h:47094)
  • 26. A. Weil. Sur certains groupes d'opérateurs unitaires, Acta Math. 111, 143-211 (1964); also in Collected Papers, Vol. III:1-69, Springer-Verlag, Heidelberg, 1980 MR 0165033 (29:2324)
  • 27. H. Weyl. Quantenmechanik und Gruppentheorie, Zeitschrift für Physik 46 (1927)
  • 28. M. W. Wong. Weyl Transforms, Springer (1998) MR 1639461 (2000c:47098)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47G30, 35Q40, 65P10, 35S05, 42B10

Retrieve articles in all journals with MSC (2010): 47G30, 35Q40, 65P10, 35S05, 42B10


Additional Information

Maurice A. de Gosson
Affiliation: Fakultät für Mathematik, Numerical Harmonic Analysis Group, Universität Wien, A-1090 Vienna, Austria
Email: maurice.de.gosson@univie.ac.at

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05742-4
PII: S 0002-9947(2012)05742-4
Keywords: Pseudo-differential operators, metaplectic group, symplectic covariance
Received by editor(s): May 6, 2011
Received by editor(s) in revised form: November 5, 2011
Published electronically: October 4, 2012
Dedicated: Dedicated to H.G. Feichtinger on his 60th birthday
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.