Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions


Authors: Xavier Cabré and Yannick Sire
Journal: Trans. Amer. Math. Soc. 367 (2015), 911-941
MSC (2010): Primary 35J05
DOI: https://doi.org/10.1090/S0002-9947-2014-05906-0
Published electronically: October 1, 2014
MathSciNet review: 3280032
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper, which is the follow-up to part I, concerns the equation $ (-\Delta )^{s} v+G'(v)=0$ in $ \mathbb{R}^{n}$, with $ s\in (0,1)$, where $ (-\Delta )^{s}$ stands for the fractional Laplacian--the infinitesimal generator of a Lévy process.

When $ n=1$, we prove that there exists a layer solution of the equation (i.e., an increasing solution with limits $ \pm 1$ at $ \pm \infty $) if and only if the potential $ G$ has only two absolute minima in $ [-1,1]$, located at $ \pm 1$ and satisfying $ G'(-1)=G'(1)=0$. Under the additional hypotheses $ G''(-1)>0$ and $ G''(1)>0$, we also establish its uniqueness and asymptotic behavior at infinity. Furthermore, we provide with a concrete, almost explicit, example of layer solution.

For $ n\geq 1$, we prove some results related to the one-dimensional symmetry of certain solutions--in the spirit of a well-known conjecture of De Giorgi for the standard Laplacian.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957 (56 #9247)
  • [2] Giovanni Alberti, Luigi Ambrosio, and Xavier Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math. 65 (2001), no. 1-3, 9-33. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday. MR 1843784 (2002f:35080), https://doi.org/10.1023/A:1010602715526
  • [3] Luigi Ambrosio and Xavier Cabré, Entire solutions of semilinear elliptic equations in $ \mathbf {R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), no. 4, 725-739 (electronic). MR 1775735 (2001g:35064), https://doi.org/10.1090/S0894-0347-00-00345-3
  • [4] Martin T. Barlow, Richard F. Bass, and Changfeng Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), no. 8, 1007-1038. MR 1755949 (2001m:35095), https://doi.org/10.1002/1097-0312(200008)53:8$ <$1007::AID-CPA3$ >$3.3.CO;2-L
  • [5] H. Berestycki, F. Hamel, and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (2000), no. 3, 375-396. MR 1763653 (2001j:35069), https://doi.org/10.1215/S0012-7094-00-10331-6
  • [6] Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564 (98e:60117)
  • [7] Xavier Cabré and Eleonora Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1179-1206. MR 2644786 (2011c:35139), https://doi.org/10.3934/dcds.2010.28.1179
  • [8] Xavier Cabré and Eleonora Cinti,
    Sharp energy estimates for nonlinear fractional diffusion equations,
    Calc. Var. Partial Differential Equations 49 (2012), no. 1-2, 233-269.MR 3148114
  • [9] Xavier Cabré and Yannick Sire,
    Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates,
    Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53.MR 3165278
  • [10] Xavier Cabré and Joan Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), no. 12, 1678-1732. MR 2177165 (2006i:35116), https://doi.org/10.1002/cpa.20093
  • [11] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493 (2009k:35096), https://doi.org/10.1080/03605300600987306
  • [12] Alberto Farina, Symmetry for solutions of semilinear elliptic equations in $ \mathbf {R}^N$ and related conjectures, Ricerche Mat. 48 (1999), no. suppl., 129-154. Papers in memory of Ennio De Giorgi (Italian). MR 1765681 (2001h:35056)
  • [13] Alberto Farina,
    Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires,
    2002.
    Habilitation à diriger des recherches, Paris VI.
  • [14] Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $ \mathbb{R}$, Acta Math. 210 (2013), no. 2, 261-318. MR 3070568, https://doi.org/10.1007/s11511-013-0095-9
  • [15] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), no. 3, 481-491. MR 1637919 (99j:35049), https://doi.org/10.1007/s002080050196
  • [16] Vassili Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc. (3) 80 (2000), no. 3, 725-768. MR 1744782 (2001f:60016), https://doi.org/10.1112/S0024611500012314
  • [17] Aleš Nekvinda, Characterization of traces of the weighted Sobolev space $ W^{1,p}(\Omega ,d^\epsilon _M)$ on $ M$, Czechoslovak Math. J. 43(118) (1993), no. 4, 695-711. MR 1258430 (95i:46041)
  • [18] Giampiero Palatucci, Ovidiu Savin, and Enrico Valdinoci,
    Local and global minimizers for a variational energy involving a fractional norm,
    Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 673-718.MR 3081641
  • [19] George Pólya,
    On the zeros of an integral function represented by Fourier's integral,
    Messenger of Math. 52 (1923), 185-188.
  • [20] Ovidiu Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2) 169 (2009), no. 1, 41-78. MR 2480601 (2009m:58025), https://doi.org/10.4007/annals.2009.169.41
  • [21] Yannick Sire and Enrico Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009), no. 6, 1842-1864. MR 2498561 (2010c:35201), https://doi.org/10.1016/j.jfa.2009.01.020
  • [22] Yannick Sire and Enrico Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial Differential Equations 34 (2009), no. 7-9, 765-784. MR 2560300 (2010k:35161), https://doi.org/10.1080/03605300902892402
  • [23] J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal. 145 (1997), no. 1, 136-150. MR 1442163 (97m:35235), https://doi.org/10.1006/jfan.1996.3016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J05

Retrieve articles in all journals with MSC (2010): 35J05


Additional Information

Xavier Cabré
Affiliation: Departament de Matemàtica Aplicada I, ICREA and Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
Email: xavier.cabre@upc.edu

Yannick Sire
Affiliation: LATP, Faculté des Sciences et Techniques, Université Paul Cézanne, Case cour A, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France – and – CNRS, LATP, CMI, 39 rue F. Joliot-Curie, F-13453 Marseille Cedex 13, France
Address at time of publication: Institut de Mathématique de Marseille, Technopole de Chateau-Gombert, CMI, Université Aix-Marseille, 13000, Marseille, France
Email: sire@cmi.univ-mrs.fr, yannick.sire@univ-amu.fr

DOI: https://doi.org/10.1090/S0002-9947-2014-05906-0
Received by editor(s): November 3, 2011
Received by editor(s) in revised form: June 27, 2012
Published electronically: October 1, 2014
Additional Notes: The first author was supported by grants MTM2008-06349-C03-01, MTM2011-27739-C04-01 (Spain) and 2009SGR-345 (Catalunya). The second author was supported by the ANR project PREFERED
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society