Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ \mathbf{s}$-Eulerian polynomials have only real roots


Authors: Carla D. Savage and Mirkó Visontai
Journal: Trans. Amer. Math. Soc. 367 (2015), 1441-1466
MSC (2010): Primary 05A05, 26C10; Secondary 05A19, 05A30
DOI: https://doi.org/10.1090/S0002-9947-2014-06256-9
Published electronically: October 10, 2014
MathSciNet review: 3280050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the roots of generalized Eulerian polynomials via a novel approach. We interpret Eulerian polynomials as the generating polynomials of a statistic over inversion sequences. Inversion sequences (also known as Lehmer codes or subexcedant functions) were recently generalized by Savage and Schuster, to arbitrary sequences $ \mathbf {s}$ of positive integers, which they called $ \mathbf {s}$-inversion sequences.

Our object of study is the generating polynomial of the ascent statistic over the set of $ \mathbf {s}$-inversion sequences of length $ n$. Since this ascent statistic over inversion sequences is equidistributed with the descent statistic over permutations, we call this generalized polynomial the $ \mathbf {s}$-Eulerian polynomial. The main result of this paper is that, for any sequence $ \mathbf {s}$ of positive integers, the $ \mathbf {s}$-Eulerian polynomial has only real roots.

This result is first shown to generalize several existing results about the real-rootedness of various Eulerian polynomials. We then show that it can be used to settle a conjecture of Brenti, that Eulerian polynomials for all finite Coxeter groups have only real roots, and partially settle a conjecture of Dilks, Petersen, Stembridge on type B affine Eulerian polynomials. It is then extended to several $ q$-analogs. We show that the MacMahon-Carlitz $ q$-Eulerian polynomial has only real roots whenever $ q$ is a positive real number, confirming a conjecture of Chow and Gessel. The same holds true for the hyperoctahedral group and the wreath product groups, confirming further conjectures of Chow and Gessel, and Chow and Mansour, respectively.

Our results have interesting geometric consequences as well.


References [Enhancements On Off] (What's this?)

  • [1] Ron M. Adin and Yuval Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001), no. 4, 431-446. MR 1829737 (2002d:05004), https://doi.org/10.1006/eujc.2000.0469
  • [2] Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J. Reine Angew. Math. 583 (2005), 163-174. MR 2146855 (2006a:05171), https://doi.org/10.1515/crll.2005.2005.583.163
  • [3] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266 (2006d:05001)
  • [4] Petter Brändén, Sign-graded posets, unimodality of $ W$-polynomials and the Charney-Davis conjecture, Electron. J. Combin. 11 (2004/06), no. 2, Research Paper 9, 15 pp. (electronic). MR 2120105 (2005k:06006)
  • [5] Petter Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3697-3716 (electronic). MR 2218995 (2007a:05007), https://doi.org/10.1090/S0002-9947-06-03856-6
  • [6] Francesco Brenti, $ q$-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), no. 5, 417-441. MR 1292954 (95i:05013), https://doi.org/10.1006/eujc.1994.1046
  • [7] Francesco Brenti, A class of $ q$-symmetric functions arising from plethysm, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 137-170. In memory of Gian-Carlo Rota. MR 1779778 (2001i:05153), https://doi.org/10.1006/jcta.2000.3092
  • [8] Winfried Bruns and Tim Römer, $ h$-vectors of Gorenstein polytopes, J. Combin. Theory Ser. A 114 (2007), no. 1, 65-76. MR 2275581 (2007m:05230), https://doi.org/10.1016/j.jcta.2006.03.003
  • [9] Chak-On Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math. 41 (2008), no. 2, 133-157. MR 2424624 (2009e:05013), https://doi.org/10.1016/j.aam.2007.07.002
  • [10] Chak-On Chow and Ira M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 38 (2007), no. 3, 275-301. MR 2301692 (2008g:05007), https://doi.org/10.1016/j.aam.2006.07.003
  • [11] Chak-On Chow and Toufik Mansour, A Carlitz identity for the wreath product $ C_r \wr \mathfrak{S}_n$, Adv. in Appl. Math. 47 (2011), no. 2, 199-215. MR 2803799 (2012j:05031), https://doi.org/10.1016/j.aam.2010.06.001
  • [12] Maria Chudnovsky and Paul Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007), no. 3, 350-357. MR 2305888 (2008c:05130), https://doi.org/10.1016/j.jctb.2006.06.001
  • [13] Sylvie Corteel, Carla D. Savage, and Andrew V. Sills, Lecture hall sequences, $ q$-series, and asymmetric partition identities, Partitions, $ q$-series, and modular forms, Dev. Math., vol. 23, Springer, New York, 2012, pp. 53-68. MR 3051183, https://doi.org/10.1007/978-1-4614-0028-8_6
  • [14] Persi Diaconis and Jason Fulman, Carries, shuffling, and symmetric functions, Adv. in Appl. Math. 43 (2009), no. 2, 176-196. MR 2531920 (2010m:60028), https://doi.org/10.1016/j.aam.2009.02.002
  • [15] Kevin Dilks, T. Kyle Petersen, and John R. Stembridge, Affine descents and the Steinberg torus, Adv. in Appl. Math. 42 (2009), no. 4, 423-444. MR 2511009 (2010c:20047), https://doi.org/10.1016/j.aam.2008.11.002
  • [16] E. Ehrhart, Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et réseaux, J. Reine Angew. Math. 226 (1967), 1-29 (French). MR 0213320 (35 #4184)
  • [17] E. Ehrhart, Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires, J. Reine Angew. Math. 227 (1967), 25-49 (French). MR 0217010 (36 #105)
  • [18] H. J. Fell, On the zeros of convex combinations of polynomials, Pacific J. Math. 89 (1980), no. 1, 43-50. MR 596914 (81m:30006)
  • [19] G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen polynome, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (1910), Zweiter Halbband, pp. 809-847.
  • [20] Światosław R. Gal, Real root conjecture fails for five- and higher-dimensional spheres, Discrete Comput. Geom. 34 (2005), no. 2, 269-284. MR 2155722 (2006c:52019), https://doi.org/10.1007/s00454-005-1171-5
  • [21] James Haglund, Ken Ono, and David G. Wagner, Theorems and conjectures involving rook polynomials with only real zeros, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 207-221. MR 1691320 (2000d:05097)
  • [22] Guoniu Han, Frédéric Jouhet, and Jiang Zeng, Two new triangles of $ q$-integers via $ q$-Eulerian polynomials of type $ A$ and $ B$, Ramanujan J. 31 (2013), no. 1-2, 115-127. MR 3048658, https://doi.org/10.1007/s11139-012-9389-3
  • [23] Lily L. Liu, Polynomials with real zeros and compatible sequences, Electron. J. Combin. 19 (2012), no. 3, Paper 33, 10. MR 2988855
  • [24] Percy A. MacMahon, Combinatory Analysis. Vol. I, II (bound in one volume), Dover Phoenix Editions, Dover Publications Inc., Mineola, NY, 2004. Reprint of An Introduction to Combinatory Analysis (1920) and Combinatory Analysis. Vol. I, II (1915, 1916). MR 2417935 (2009e:05002)
  • [25] Charles A. Micchelli, Cardinal $ {\mathcal {L}}$-splines, Studies in spline functions and approximation theory, Academic Press, New York, 1976, pp. 203-250. MR 0481767 (58 #1866)
  • [26] Mircea Mustaţa and Sam Payne, Ehrhart polynomials and stringy Betti numbers, Math. Ann. 333 (2005), no. 4, 787-795. MR 2195143 (2007c:14055), https://doi.org/10.1007/s00208-005-0691-x
  • [27] Eran Nevo, T. Kyle Petersen, and Bridget Eileen Tenner, The $ \gamma $-vector of a barycentric subdivision, J. Combin. Theory Ser. A 118 (2011), no. 4, 1364-1380. MR 2755087 (2012h:52041), https://doi.org/10.1016/j.jcta.2011.01.001
  • [28] Nikola Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (German). MR 0164003 (29 #1302)
  • [29] Thomas W. Pensyl and Carla D. Savage, Lecture hall partitions and the wreath products $ C_k\wr S_n$, Integers 12B (2012/13), no. Proceedings of the Integers Conference 2011, Paper No. A10, 18. MR 3055684
  • [30] T. Kyle Petersen, Enriched $ P$-partitions and peak algebras, Adv. Math. 209 (2007), no. 2, 561-610. MR 2296309 (2008h:05115), https://doi.org/10.1016/j.aim.2006.05.016
  • [31] Carla D. Savage and Michael J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, J. Combin. Theory Ser. A 119 (2012), no. 4, 850-870. MR 2881231 (2012m:05052), https://doi.org/10.1016/j.jcta.2011.12.005
  • [32] Carla D. Savage and Gopal Viswanathan, The $ 1/k$-Eulerian polynomials, Electron. J. Combin. 19 (2012), no. 1, Paper 9, 21. MR 2880640 (2012m:05042)
  • [33] Rodica Simion, A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences, J. Combin. Theory Ser. A 36 (1984), no. 1, 15-22. MR 728500 (85e:05015), https://doi.org/10.1016/0097-3165(84)90075-X
  • [34] Richard P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342. Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). MR 593545 (82a:52007)
  • [35] Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236-238. MR 563925 (81f:52014), https://doi.org/10.1016/0001-8708(80)90050-X
  • [36] Einar Steingrimsson, Permutations statistics of indexed and poset permutations, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)-Massachusetts Institute of Technology. MR 2716358
  • [37] John R. Stembridge, Coxeter cones and their $ h$-vectors, Adv. Math. 217 (2008), no. 5, 1935-1961. MR 2388082 (2010e:52027), https://doi.org/10.1016/j.aim.2007.09.002
  • [38] David G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459-483. MR 1145841 (93f:15020), https://doi.org/10.1016/0022-247X(92)90261-B
  • [39] David G. Wagner, Zeros of reliability polynomials and $ f$-vectors of matroids, Combin. Probab. Comput. 9 (2000), no. 2, 167-190. MR 1762787 (2001f:05090), https://doi.org/10.1017/S0963548399004162

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05A05, 26C10, 05A19, 05A30

Retrieve articles in all journals with MSC (2010): 05A05, 26C10, 05A19, 05A30


Additional Information

Carla D. Savage
Affiliation: Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27695-8206
Email: savage@ncsu.edu

Mirkó Visontai
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Address at time of publication: Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Email: visontai@kth.se

DOI: https://doi.org/10.1090/S0002-9947-2014-06256-9
Received by editor(s): March 2, 2013
Received by editor(s) in revised form: July 19, 2013
Published electronically: October 10, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society