Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Bounded mean oscillation and the uniqueness of active scalar equations


Authors: Jonas Azzam and Jacob Bedrossian
Journal: Trans. Amer. Math. Soc. 367 (2015), 3095-3118
MSC (2010): Primary 35A02; Secondary 35Q92, 35Q35, 76B03
DOI: https://doi.org/10.1090/S0002-9947-2014-06040-6
Published electronically: December 18, 2014
MathSciNet review: 3314802
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a number of uniqueness questions for several wide classes of active scalar equations, unifying and generalizing the techniques of several authors. As special cases of our results, we provide a significantly simplified proof to the known uniqueness result for the 2D Euler equations in $ L^1 \cap BMO$ and provide a mild improvement to the recent results of Rusin for the 2D inviscid surface quasi-geostrophic (SQG) equations, which are now to our knowledge the best results known for this model. We also obtain what are (to our knowledge) the strongest known uniqueness results for the Patlak-Keller-Segel models with nonlinear diffusion. We obtain these results via technical refinements of energy methods which are well-known in the $ L^2$ setting but are less well-known in the $ \dot {H}^{-1}$ setting. The $ \dot {H}^{-1}$ method can be considered a generalization of Yudovich's classical method and is naturally applied to equations such as the Patlak-Keller-Segel models with nonlinear diffusion and other variants. Important points of our analysis are an $ L^p$-$ BMO$ interpolation lemma and a Sobolev embedding lemma which shows that velocity fields $ v$ with $ \nabla v \in BMO$ are locally log-Lipschitz; the latter is known in harmonic analysis but does not seem to have been connected to this setting.


References [Enhancements On Off] (What's this?)

  • [1] Luigi Ambrosio, Transport equation and Cauchy problem for $ BV$ vector fields, Invent. Math. 158 (2004), no. 2, 227-260. MR 2096794 (2005f:35127), https://doi.org/10.1007/s00222-004-0367-2
  • [2] Jacob Bedrossian and Nader Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in $ \Bbb {R}^2$ with measure-valued initial data, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 717-801. MR 3269635, https://doi.org/10.1007/s00205-014-0796-z
  • [3] Jacob Bedrossian and Nancy Rodríguez, Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $ \Bbb {R}^d$, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 5, 1279-1309. MR 3199780, https://doi.org/10.3934/dcdsb.2014.19.1279
  • [4] Jacob Bedrossian, Nancy Rodríguez, and Andrea L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity 24 (2011), no. 6, 1683-1714. MR 2793895, https://doi.org/10.1088/0951-7715/24/6/001
  • [5] Andrea L. Bertozzi and Jeremy Brandman, Finite-time blow-up of $ L^\infty $-weak solutions of an aggregation equation, Commun. Math. Sci. 8 (2010), no. 1, 45-65. MR 2655900 (2011d:35076)
  • [6] Andrea L. Bertozzi, Thomas Laurent, and Jesús Rosado, $ L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math. 64 (2011), no. 1, 45-83. MR 2743876 (2012d:35036), https://doi.org/10.1002/cpa.20334
  • [7] Andrea L. Bertozzi and Dejan Slepčev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Commun. Pure Appl. Anal. 9 (2010), no. 6, 1617-1637. MR 2684052 (2011h:35156), https://doi.org/10.3934/cpaa.2010.9.1617
  • [8] Adrien Blanchet, José A. Carrillo, and Philippe Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations 35 (2009), no. 2, 133-168. MR 2481820 (2010e:35149), https://doi.org/10.1007/s00526-008-0200-7
  • [9] Adrien Blanchet, Jean Dolbeault, and Benoît Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 32 pp. (electronic). MR 2226917 (2007e:35277)
  • [10] Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903-1930. MR 2680400 (2011m:35281), https://doi.org/10.4007/annals.2010.171.1903
  • [11] José A. Carrillo and Jesús Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2010, pp. 3-16. MR 2648318 (2011e:49069), https://doi.org/10.4171/077-1/1
  • [12] Peter Constantin, Active scalars and the Euler equations, Tatra Mt. Math. Publ. 4 (1994), 25-38. Equadiff 8 (Bratislava, 1993). MR 1298453 (96b:35166)
  • [13] Peter Constantin, Diego Cordoba, and Jiahong Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 (2001), Special Issue, Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000), 97-107. MR 1855665 (2002h:35246), https://doi.org/10.1512/iumj.2008.57.3629
  • [14] Peter Constantin, Gautam Iyer, and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 (2008), no. 6, 2681-2692. MR 2482996 (2009k:35120), https://doi.org/10.1512/iumj.2008.57.3629
  • [15] Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225-260. MR 2564474 (2011d:35386), https://doi.org/10.1007/s00205-008-0201-x
  • [16] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511-547. MR 1022305 (90j:34004), https://doi.org/10.1007/BF01393835
  • [17] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • [18] Isabelle Gallagher and Thierry Gallay, Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann. 332 (2005), no. 2, 287-327. MR 2178064 (2007b:35252), https://doi.org/10.1007/s00208-004-0627-x
  • [19] Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41-66. MR 554817 (81b:42047), https://doi.org/10.1512/iumj.1980.29.29005
  • [20] James P. Kelliher, On the flow map for 2D Euler equations with unbounded vorticity, Nonlinearity 24 (2011), no. 9, 2599-2637. MR 2824024 (2012i:35286), https://doi.org/10.1088/0951-7715/24/9/013
  • [21] A. Kiselev, Regularity and blow up for active scalars, Math. Model. Nat. Phenom. 5 (2010), no. 4, 225-255. MR 2662457 (2011e:35303), https://doi.org/10.1051/mmnp/20105410
  • [22] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445-453. MR 2276260 (2008f:35308), https://doi.org/10.1007/s00222-006-0020-3
  • [23] Hideo Kozono and Hidemitsu Wadade, Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO, Math. Z. 259 (2008), no. 4, 935-950. MR 2403750 (2009f:46051), https://doi.org/10.1007/s00209-007-0258-5
  • [24] Thomas Laurent, Local and global existence for an aggregation equation, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1941-1964. MR 2372494 (2008k:35475), https://doi.org/10.1080/03605300701318955
  • [25] G. Loeper, A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal. 38 (2006), no. 3, 795-823 (electronic). MR 2262943 (2007j:35173), https://doi.org/10.1137/050629070
  • [26] Grégoire Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl. (9) 86 (2006), no. 1, 68-79 (English, with English and French summaries). MR 2246357 (2007e:82045), https://doi.org/10.1016/j.matpur.2006.01.005
  • [27] Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882 (2003a:76002)
  • [28] Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347 (97f:57022)
  • [29] Raoul Robert, Unicité de la solution faible à support compact de l'équation de Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 8, 873-877 (French, with English and French summaries). MR 1450441 (98d:35219), https://doi.org/10.1016/S0764-4442(97)86961-3
  • [30] W. Rusin, Logarithmic spikes of gradients and uniqueness of weak solutions to a class of active scalar equations, Preprint, arXiv:1106.2778 (2011).
  • [31] Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343-401. MR 1231007 (94h:35215), https://doi.org/10.1007/BF02921318
  • [32] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1261-1286. MR 1476315 (98j:35149), https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.3.CO;2-4
  • [33] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [34] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [35] Jussi Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101-118. MR 927080 (89d:30027), https://doi.org/10.2748/tmj/1178228081
  • [36] Juan Luis Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory. MR 2286292 (2008e:35003)
  • [37] Misha Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 769-812 (English, with English and French summaries). MR 1717576 (2000i:76008), https://doi.org/10.1016/S0012-9593(00)87718-6
  • [38] Jiahong Wu, Solutions of the 2D quasi-geostrophic equation in Hölder spaces, Nonlinear Anal. 62 (2005), no. 4, 579-594. MR 2149903 (2006a:76011), https://doi.org/10.1016/j.na.2005.03.053
  • [39] V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Z. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066 (Russian). MR 0158189 (28 #1415)
  • [40] V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett. 2 (1995), no. 1, 27-38. MR 1312975 (95k:35168)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35A02, 35Q92, 35Q35, 76B03

Retrieve articles in all journals with MSC (2010): 35A02, 35Q92, 35Q35, 76B03


Additional Information

Jonas Azzam
Affiliation: Department of Mathematics, University of Washington-Seattle, Seattle, Washington 98195
Address at time of publication: Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C Facultat de Ciències, 08193 Bellaterra, Barcelona, Spain
Email: jonasazzam@math.washington.edu, jazzam@mat.uab.cat

Jacob Bedrossian
Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
Address at time of publication: Department of Mathematics and the Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, Maryland 20742
Email: jacob@cims.nyu.edu, jacob@cscamm.umd.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06040-6
Received by editor(s): August 21, 2011
Received by editor(s) in revised form: November 3, 3012
Published electronically: December 18, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society