Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonnegativity constraints for structured complete systems


Authors: Alexander M. Powell and Anneliese H. Spaeth
Journal: Trans. Amer. Math. Soc. 368 (2016), 5783-5806
MSC (2010): Primary 42C80; Secondary 46E30, 46B15
DOI: https://doi.org/10.1090/tran/6562
Published electronically: December 3, 2015
MathSciNet review: 3458399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate pointwise nonnegativity as an obstruction to various types of structured completeness in $ L^p(\mathbb{R})$. For example, we prove that if each element of the system $ \{f_n\}_{n=1}^\infty \subset L^p(\mathbb{R})$ is pointwise nonnegative, then $ \{f_n\}_{n=1}^{\infty }$ cannot be an unconditional basis or unconditional quasibasis (unconditional Schauder frame) for $ L^p(\mathbb{R})$. In particular, in $ L^2(\mathbb{R})$ this precludes the existence of nonnegative Riesz bases and frames. On the other hand, there exist pointwise nonnegative conditional quasibases in $ L^p(\mathbb{R})$, and there also exist pointwise nonnegative exact systems and Markushevich bases in $ L^p(\mathbb{R})$.


References [Enhancements On Off] (What's this?)

  • [1] Dale Alspach and Edward Odell, $ L_p$ spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 123-159. MR 1863691 (2003b:46013), https://doi.org/10.1016/S1874-5849(01)80005-X
  • [2] John J. Benedetto, Christopher Heil, and David F. Walnut, Differentiation and the Balian-Low theorem, J. Fourier Anal. Appl. 1 (1995), no. 4, 355-402. MR 1350699 (96f:42002), https://doi.org/10.1007/s00041-001-4016-5
  • [3] John J. Benedetto, Alexander M. Powell, and Özgür Yılmaz, Sigma-Delta ( $ \Sigma \Delta $) quantization and finite frames, IEEE Trans. Inform. Theory 52 (2006), no. 5, 1990-2005. MR 2234460 (2007a:94030), https://doi.org/10.1109/TIT.2006.872849
  • [4] Bernhard G. Bodmann and Nathaniel Hammen, Stable phase retrieval with low-redundancy frames, Adv. Comput. Math. 41 (2015), no. 2, 317-331. MR 3337494, https://doi.org/10.1007/s10444-014-9359-y
  • [5] J. Bourgain, A remark on the uncertainty principle for Hilbertian basis, J. Funct. Anal. 79 (1988), no. 1, 136-143. MR 950087 (89f:81025), https://doi.org/10.1016/0022-1236(88)90033-X
  • [6] J. S. Byrnes, W. Moran, and B. Saffari, Smooth PONS, J. Fourier Anal. Appl. 6 (2000), no. 6, 663-674. MR 1790249 (2001k:42011), https://doi.org/10.1007/BF02510701
  • [7] Jian-Feng Cai, Bin Dong, Stanley Osher, and Zuowei Shen, Image restoration: total variation, wavelet frames, and beyond, J. Amer. Math. Soc. 25 (2012), no. 4, 1033-1089. MR 2947945, https://doi.org/10.1090/S0894-0347-2012-00740-1
  • [8] N. L. Carothers, A short course on Banach space theory, London Mathematical Society Student Texts, vol. 64, Cambridge University Press, Cambridge, 2005. MR 2124948 (2005k:46001)
  • [9] Peter G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129-201. MR 1757401 (2001f:42046)
  • [10] Peter G. Casazza, Deguang Han, and David R. Larson, Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 149-182. MR 1738089 (2000m:46015), https://doi.org/10.1090/conm/247/03801
  • [11] Wojciech Czaja and Alexander M. Powell, Recent developments in the Balian-Low theorem, Harmonic analysis and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2006, pp. 79-100. MR 2249306 (2007d:42045), https://doi.org/10.1007/0-8176-4504-7_5
  • [12] I. Daubechies and A. J. E. M. Janssen, Two theorems on lattice expansions, IEEE Trans. Inform. Theory 39 (1993), no. 1, 3-6. MR 1211486 (94f:94001), https://doi.org/10.1109/18.179336
  • [13] L. E. Dor and E. Odell, Monotone bases in $ L_{p}$, Pacific J. Math. 60 (1975), no. 2, 51-61. MR 0399832 (53 #3674)
  • [14] D. Freeman, E. Odell, Th. Schlumprecht, and A. Zsák. Unconditional structures of translates for $ L_p(\mathbb{R}^d)$, preprint (2012), available at http://arxiv.org/pdf/1209.4619.pdf
  • [15] Bernard R. Gelbaum, Notes on Banach spaces and bases, An. Acad. Brasil. Ci. 30 (1958), 29-36. MR 0098974 (20 #5419)
  • [16] Vivek K. Goyal, Jelena Kovačević, and Jonathan A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), no. 3, 203-233. MR 1829801 (2002h:94012), https://doi.org/10.1006/acha.2000.0340
  • [17] V. K. Goyal, J. Kovačević, and M. Vetterli, Quantized frame expansions as source-channel codes for erasure channels, in Proc. IEEE Data Compression Conference, 1999, 325-355.
  • [18] Karlheinz Gröchenig and Eugenia Malinnikova, Phase space localization of Riesz bases for $ L^2(\mathbb{R}^d)$, Rev. Mat. Iberoam. 29 (2013), no. 1, 115-134. MR 3010124, https://doi.org/10.4171/RMI/715
  • [19] V. I. Gurariĭ and N. I. Gurariĭ, Bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 210-215 (Russian). MR 0283549 (44 #780)
  • [20] Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94. MR 1686653 (2001a:47013), https://doi.org/10.1090/memo/0697
  • [21] Christopher Heil, A basis theory primer, Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2011. MR 2744776 (2012b:46022)
  • [22] Christopher Heil, Yoo Young Koo, and Jae Kun Lim, Duals of frame sequences, Acta Appl. Math. 107 (2009), no. 1-3, 75-90. MR 2520010 (2010c:42065), https://doi.org/10.1007/s10440-008-9410-4
  • [23] Robert C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. MR 0021241 (9,42c)
  • [24] K. S. Kazarjan, The multiplicative completion of certain systems, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 13 (1978), no. 4, 315-351, 353 (Russian, with English and Armenian summaries). MR 526648 (80j:42038)
  • [25] K. S. Kazarian, On bases and unconditional bases in the spaces $ L^{p}(\mu ),$ $ 1\leq p<\infty $, Studia Math. 71 (1981/82), no. 3, 227-249. MR 667313 (84d:42037)
  • [26] K. S. Kazarian and Robert E. Zink, Some ramifications of a theorem of Boas and Pollard concerning the completion of a set of functions in $ L^2$, Trans. Amer. Math. Soc. 349 (1997), no. 11, 4367-4383. MR 1443881 (99d:42050), https://doi.org/10.1090/S0002-9947-97-02034-5
  • [27] K. S. Kazarian and Robert E. Zink, Subsystems of the Schauder system that are quasibases for $ L^p[0,1]$, $ 1\leq p<+\infty $, Proc. Amer. Math. Soc. 126 (1998), no. 10, 2883-2893. MR 1452807 (99a:46050), https://doi.org/10.1090/S0002-9939-98-04388-3
  • [28] Rui Liu and Bentuo Zheng, A characterization of Schauder frames which are near-Schauder bases, J. Fourier Anal. Appl. 16 (2010), no. 5, 791-803. MR 2673710 (2011h:46023), https://doi.org/10.1007/s00041-010-9126-5
  • [29] Shahaf Nitzan and Jan-Fredrik Olsen, From exact systems to Riesz bases in the Balian-Low theorem, J. Fourier Anal. Appl. 17 (2011), no. 4, 567-603. MR 2819167 (2012e:42065), https://doi.org/10.1007/s00041-010-9150-5
  • [30] E. Odell, B. Sari, Th. Schlumprecht, and B. Zheng, Systems formed by translates of one element in $ L_{p}(\mathbb{R})$, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6505-6529. MR 2833566 (2012g:42063), https://doi.org/10.1090/S0002-9947-2011-05305-5
  • [31] R. E. A. C. Paley, A remarkable series of orthogonal functions I, Proceedings of the London Mathematical Society, 34 (1931), no. 1, 241-264.
  • [32] Alexander M. Powell, Rayan Saab, and Özgür Yılmaz, Quantization and finite frames, Finite frames, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, pp. 267-302. MR 2964013, https://doi.org/10.1007/978-0-8176-8373-3_8
  • [33] William H. Ruckle, The extent of the sequence space associated with a basis, Canad. J. Math. 24 (1972), 636-641. MR 0300057 (45 #9105)
  • [34] F. Schipp, W. R. Wade, and P. Simon, Walsh series, Adam Hilger, Ltd., Bristol, 1990. An introduction to dyadic harmonic analysis; With the collaboration of J. Pál. MR 1117682 (92g:42001)
  • [35] Ivan Singer, Bases in Banach spaces. I, Springer-Verlag, New York-Berlin, 1970. Die Grundlehren der mathematischen Wissenschaften, Band 154. MR 0298399 (45 #7451)
  • [36] Ivan Singer, On biorthogonal systems and total sequences of functionals, Math. Ann. 193 (1971), 183-188. MR 0350387 (50 #2880)
  • [37] A. H. Spaeth, A determination of the existence of various types of positive systems in $ L^p$, Ph.D. Thesis, Vanderbilt University, Department of Mathematics, 2013.
  • [38] A. N. Slepchenko, On some generalizations of bases in Banach spaces, Mathematics of the USSR Sbornik, 49 (1984), no. 1, 269-281.
  • [39] P. L. Uljanov, Representation of functions by series, and the classes $ \phi (L)$, Uspehi Mat. Nauk 27 (1972), no. 2(164), 3-52 (Russian). MR 0399749 (53 #3591)
  • [40] Gang Joon Yoon and Christopher Heil, Duals of weighted exponential systems, Acta Appl. Math. 119 (2012), 97-112. MR 2915572, https://doi.org/10.1007/s10440-011-9663-1

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42C80, 46E30, 46B15

Retrieve articles in all journals with MSC (2010): 42C80, 46E30, 46B15


Additional Information

Alexander M. Powell
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: alexander.m.powell@vanderbilt.edu

Anneliese H. Spaeth
Affiliation: Department of Mathematics, Huntingdon College, Montgomery, Alabama 36106
Email: aspaeth@hawks.huntingdon.edu

DOI: https://doi.org/10.1090/tran/6562
Received by editor(s): November 15, 2013
Received by editor(s) in revised form: July 24, 2014
Published electronically: December 3, 2015
Additional Notes: The authors were supported in part by NSF DMS Grant 1211687.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society