Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isocategorical groups and their Weil representations


Author: César Galindo
Journal: Trans. Amer. Math. Soc. 369 (2017), 7935-7960
MSC (2010): Primary 16W30, 20C05
DOI: https://doi.org/10.1090/tran/6919
Published electronically: May 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two groups are called isocategorical over a field $ k$ if their respective categories of $ k$-linear representations are monoidally equivalent. We classify isocategorical groups over arbitrary fields, extending the earlier classification of Etingof-Gelaki and Davydov for algebraically closed fields. In order to construct concrete examples of isocategorical groups a new variant of the Weil representation associated to isocategorical groups is defined. We construct examples of non-isomorphic isocategorical groups over any field of characteristic different from two and rational Weil representations associated to symplectic spaces over finite fields of characteristic two.


References [Enhancements On Off] (What's this?)

  • [BK01] Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619
  • [KL90] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
  • [Bla93] Laure Blasco, Paires duales réductives en caractéristique $ 2$, Mém. Soc. Math. France (N.S.) 52 (1993), 1-73 (French, with English and French summaries). MR 1212951
  • [Dav01] A. A. Davydov, Galois algebras and monoidal functors between categories of representations of finite groups, J. Algebra 244 (2001), no. 1, 273-301. MR 1856538, https://doi.org/10.1006/jabr.2001.8893
  • [DM82] Pierre Deligne and James S. Milne.
    Tannakian Categories, volume 900 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin-New York, 1982 (see MR 0654325 (84m:14046)).
  • [EG01] Pavel Etingof and Shlomo Gelaki, Isocategorical groups, Internat. Math. Res. Notices 2 (2001), 59-76. MR 1810480, https://doi.org/10.1155/S1073792801000046
  • [EML53] Samuel Eilenberg and Saunders Mac Lane, On the groups of $ H(\Pi ,n)$. I, Ann. of Math. (2) 58 (1953), 55-106. MR 0056295
  • [GAP13] The GAP Group,
    GAP - Groups, Algorithms, and Programming, Version 4.6.5, 2013.
  • [GH12] Shamgar Gurevich and Ronny Hadani, The Weil representation in characteristic two, Adv. Math. 230 (2012), no. 3, 894-926. MR 2921165, https://doi.org/10.1016/j.aim.2012.03.008
  • [GM12] César Galíndo and Manuel Medina, On the classification of Galois objects for finite groups, Comm. Algebra 40 (2012), no. 7, 2577-2595. MR 2948848, https://doi.org/10.1080/00927872.2011.583304
  • [Gri73] Robert L. Griess Jr., Automorphisms of extra special groups and nonvanishing degree $ 2$cohomology, Pacific J. Math. 48 (1973), 403-422. MR 0476878
  • [Gro02] Larry C. Grove, Classical groups and geometric algebra, Graduate Studies in Mathematics, vol. 39, American Mathematical Society, Providence, RI, 2002. MR 1859189
  • [IK02] Masaki Izumi and Hideki Kosaki, On a subfactor analogue of the second cohomology, Rev. Math. Phys. 14 (2002), no. 7-8, 733-757. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR 1932664, https://doi.org/10.1142/S0129055X02001375
  • [KP] Ralph M. Kaufmann and David Pham, The Drinfeld double and twisting in stringy orbifold theory, Internat. J. Math. 20 (2009), no. 5, 623-657. MR 2526310, https://doi.org/10.1142/S0129167X09005431
  • [KC76] H. F. Kreimer and P. M. Cook II, Galois theories and normal bases, J. Algebra 43 (1976), no. 1, 115-121. MR 0424782
  • [ML98] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
  • [Mon93] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1993. MR 1243637
  • [Mon09] Susan Montgomery, Hopf Galois theory: a survey, New topological contexts for Galois theory and algebraic geometry (BIRS 2008), Geom. Topol. Monogr., vol. 16, Geom. Topol. Publ., Coventry, 2009, pp. 367-400. MR 2544394, https://doi.org/10.2140/gtm.2009.16.367
  • [MS] Gregory Moore and Graeme Segal,
    D-branes and K-theory in 2D topological field theory,
    arXiv preprint hep-th/0609042.
  • [Sch96] Peter Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996), no. 12, 3797-3825. MR 1408508, https://doi.org/10.1080/00927879608825788
  • [Sch04] Peter Schauenburg, Hopf-Galois and bi-Galois extensions, Galois theory, Hopf algebras, and semiabelian categories, Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, pp. 469-515. MR 2075600
  • [SR72] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
  • [Tam00] D. Tambara, Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel J. Math. 118 (2000), 29-60. MR 1776075, https://doi.org/10.1007/BF02803515
  • [Wei64] André Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211 (French). MR 0165033

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16W30, 20C05

Retrieve articles in all journals with MSC (2010): 16W30, 20C05


Additional Information

César Galindo
Affiliation: Departamento de Matemáticas, Universidad de los Andes, 18 A 12 Bogotá, Colombia
Email: cn.galindo1116@uniandes.edu.co, cesarneyit@gmail.com

DOI: https://doi.org/10.1090/tran/6919
Keywords: Hopf-Galois objects, tensor categories, isocategorical groups, Weil representations.
Received by editor(s): June 15, 2015
Received by editor(s) in revised form: December 11, 2015
Published electronically: May 1, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society