Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Families of Riemann surfaces, uniformization and arithmeticity


Authors: Gabino González-Diez and Sebastián Reyes-Carocca
Journal: Trans. Amer. Math. Soc. 370 (2018), 1529-1549
MSC (2010): Primary 32G15, 14J20, 14J29
DOI: https://doi.org/10.1090/tran/6988
Published electronically: November 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A consequence of the results of Bers and Griffiths on the uniformization of complex algebraic varieties is that the universal cover of a family of Riemann surfaces, with base and fibers of finite hyperbolic type, is a contractible $ 2-$dimensional domain that can be realized as the graph of a holomorphic motion of the unit disk.

In this paper we determine which holomorphic motions give rise to these uniformizing domains and characterize which among them correspond to arithmetic families (i.e. families defined over number fields). Then we apply these results to characterize the arithmeticity of complex surfaces of general type in terms of the biholomorphism class of the $ 2-$dimensional domains that arise as universal covers of their Zariski open subsets. For the important class of Kodaira fibrations this criterion implies that arithmeticity can be read from the universal cover. All this is very much in contrast with the corresponding situation in complex dimension one, where the universal cover is always the unit disk.


References [Enhancements On Off] (What's this?)

  • [1] S. Ju. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269-1293; English transl., Math. USRR Izvestija 5 (1971), 1277-1302 (Russian). MR 0321933
  • [2] M. F. Atiyah, The signature of fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 73-84. MR 0254864
  • [3] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • [4] Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300. MR 0348097, https://doi.org/10.1112/blms/4.3.257
  • [5] Lipman Bers, Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 43-55. MR 0361051
  • [6] Lucia Caporaso, On certain uniformity properties of curves over function fields, Compositio Math. 130 (2002), no. 1, 1-19. MR 1883689, https://doi.org/10.1023/A:1013703430436
  • [7] B. Chen and J. Zhang, Holomorphic motion and invariant metrics, Analytic Geometry of the Bergman Kernel and Related Topics, RIMS Research Collections 1487 (2006), 27-39.
  • [8] E. M. Chirka, Holomorphic motions and the uniformization of holomorphic families of Riemann surfaces, Uspekhi Mat. Nauk 67 (2012), no. 6(408), 125-202 (Russian, with Russian summary); English transl., Russian Math. Surveys 67 (2012), no. 6, 1091-1165. MR 3075079, https://doi.org/10.1070/RM2012v067n06ABEH004819
  • [9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109. MR 0262240
  • [10] Clifford J. Earle and Robert S. Fowler, Holomorphic families of open Riemann surfaces, Math. Ann. 270 (1985), no. 2, 249-273. MR 771982, https://doi.org/10.1007/BF01456185
  • [11] C. J. Earle, I. Kra, and S. L. Krushkal', Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927-948. MR 1214783, https://doi.org/10.2307/2154750
  • [12] Clifford J. Earle and Albert Marden, On holomorphic families of Riemann surfaces, Conformal dynamics and hyperbolic geometry, Contemp. Math., vol. 573, Amer. Math. Soc., Providence, RI, 2012, pp. 67-97. MR 2964074, https://doi.org/10.1090/conm/573/11413
  • [13] Hershel M. Farkas and Irwin Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR 583745
  • [14] Frederick P. Gardiner, Yunping Jiang, and Zhe Wang, Holomorphic motions and related topics, Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser., vol. 368, Cambridge Univ. Press, Cambridge, 2010, pp. 156-193. MR 2665009
  • [15] Ernesto Girondo and Gabino González-Diez, Introduction to compact Riemann surfaces and dessins d'enfants, London Mathematical Society Student Texts, vol. 79, Cambridge University Press, Cambridge, 2012. MR 2895884
  • [16] Gabino González-Diez, Variations on Belyi's theorem, Q. J. Math. 57 (2006), no. 3, 339-354. MR 2253591, https://doi.org/10.1093/qmath/hai021
  • [17] Gabino González-Diez, Belyi's theorem for complex surfaces, Amer. J. Math. 130 (2008), no. 1, 59-74. MR 2382142, https://doi.org/10.1353/ajm.2008.0004
  • [18] Gabino González-Diez and Sebastián Reyes-Carocca, The arithmeticity of a Kodaira fibration is determined by its universal cover, Comment. Math. Helv. 90 (2015), no. 2, 429-434. MR 3351751, https://doi.org/10.4171/CMH/359
  • [19] Phillip A. Griffiths, Complex-analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. (2) 94 (1971), 21-51. MR 0310284, https://doi.org/10.2307/1970733
  • [20] F. Grunewald, A. Jaikin-Zapirain, and P. A. Zalesskii, Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J. 144 (2008), no. 1, 53-72. MR 2429321, https://doi.org/10.1215/00127094-2008-031
  • [21] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • [22] F. Hirzebruch, The signature of ramified coverings, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 253-265. MR 0258060
  • [23] Alan Howard and Andrew J. Sommese, On the theorem of de Franchis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 3, 429-436. MR 739918
  • [24] John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1: Teichmüller theory, Matrix Editions, Ithaca, NY, 2006. With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223
  • [25] Yôichi Imayoshi, Holomorphic families of Riemann surfaces and Teichmüller spaces, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 277-300. MR 624820
  • [26] Yoichi Imayoshi and Minori Nishimura, A remark on universal coverings of holomorphic families of Riemann surfaces, Kodai Math. J. 28 (2005), no. 2, 230-247. MR 2153912, https://doi.org/10.2996/kmj/1123767005
  • [27] Yôichi Imayoshi and Hiroshige Shiga, A finiteness theorem for holomorphic families of Riemann surfaces, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 207-219. MR 955842, https://doi.org/10.1007/978-1-4613-9611-6_15
  • [28] F. E. A. Johnson, Linear properties of poly-Fuchsian groups, Collect. Math. 45 (1994), no. 2, 183-203. MR 1316936
  • [29] Arnold Kas, On deformations of a certain type of irregular algebraic surface, Amer. J. Math. 90 (1968), 789-804. MR 0242199, https://doi.org/10.2307/2373484
  • [30] Azniv Kasparian, When does a bounded domain cover a projective manifold? (Survey), Conference on Geometry and Mathematical Physics (Zlatograd, 1995), Serdica Math. J. 23 (1997), no. 2, 165-176. MR 1627594
  • [31] Yujiro Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), no. 1, 57-71. MR 652646, https://doi.org/10.1007/BF01404756
  • [32] Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983
  • [33] K. Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967), 207-215. MR 0216521, https://doi.org/10.1007/BF02788717
  • [34] Kazuhisa Maehara, A finiteness property of varieties of general type, Math. Ann. 262 (1983), no. 1, 101-123. MR 690010, https://doi.org/10.1007/BF01474173
  • [35] R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193-217. MR 732343
  • [36] Sudeb Mitra, On extensions of holomorphic motions--a survey, Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser., vol. 368, Cambridge Univ. Press, Cambridge, 2010, pp. 283-308. MR 2665015
  • [37] David Mumford, Abelian quotients of the Teichmüller modular group, J. Analyse Math. 18 (1967), 227-244. MR 0219543, https://doi.org/10.1007/BF02798046
  • [38] David Mumford, Algebraic geometry. I: Complex projective varieties, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. MR 0453732
  • [39] David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328. MR 717614
  • [40] Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. MR 927291
  • [41] Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164. MR 0130324
  • [42] Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966
  • [43] G. B. Shabat, The complex structure of domains that cover algebraic surfaces, Funkcional. Anal. i Priložen. 11 (1977), no. 2, 67-75, 96; English transl., Funct. Anal. Appl. 11 (1977), 135-142 (Russian). MR 0454053
  • [44] G. B. Shabat, Local reconstruction of complex algebraic surfaces from universal coverings, Funktsional. Anal. i Prilozhen. 17 (1983), no. 2, 90-91 (Russian). MR 705058
  • [45] I. R. Shafarevich, Basic algebraic geometry, Springer Study Edition, Springer-Verlag, Berlin-New York, 1977. Translated from the Russian by K. A. Hirsch; Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. MR 0447223
  • [46] Zbigniew Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), no. 2, 347-355. MR 1037218, https://doi.org/10.2307/2048323
  • [47] X. Wang, Variation of the Bergman kernels under deformation of complex structures, arXiv:1307.5660.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32G15, 14J20, 14J29

Retrieve articles in all journals with MSC (2010): 32G15, 14J20, 14J29


Additional Information

Gabino González-Diez
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
Email: gabino.gonzalez@uam.es

Sebastián Reyes-Carocca
Affiliation: Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile
Email: sebastian.reyes@ufrontera.cl

DOI: https://doi.org/10.1090/tran/6988
Keywords: Holomorphic families of Riemann surfaces, complex surfaces and their universal covers, fields of definition, holomorphic motions
Received by editor(s): October 29, 2015
Received by editor(s) in revised form: May 13, 2016
Published electronically: November 7, 2017
Additional Notes: Both authors were partially supported by Spanish MEyC Grant MTM 2012-31973
The second author was also partially supported by Becas Chile, Universidad de La Frontera, Fondecyt Postdoctoral Project 3160002 and Project Anillo ACT1415 PIA CONICYT
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society