Visit our **AMS COVID-19 page** for educational and professional resources and scheduling updates

One of my goals is to create very beautiful images by using mathematical concepts such as trigonometric functions, exponential function, regular polygons, line segments, etc. I create images by running my program on a Linux operating system

— * Hamid Naderi Yeganeh *

This image shows 1,000 line segments. For each $i=1,2,3,\ldots\ldots,1000$ the endpoints of the $i$-th line segment are: $(-\sin(2\pi i/1000), -\cos(2\pi i/1000))$ and $((-1/2)\sin(8\pi i/1000), (-1/2)\cos(12\pi i/1000))$. I created this image by running my program on a Linux operating system.

This image shows 1,000 line segments. For each $i=1,2,3,\ldots,1000$ the endpoints of the $i$-th line segment are: $(-\sin(4\pi i/1000), -\cos(2\pi i/1000))$ and $((-1/2)\sin(8\pi i/1000), (-1/2)\cos(4\pi i/1000))$. I created this image by running my program on a Linux operating system.

This image shows 1,000 line segments. For each $i=1,2,3,\ldots,1000$ the endpoints of the line segment are: $(-\sin(8\pi i/1000), -\cos(2\pi i/1000))$ and $((-1/2)\sin(6\pi i/1000), (-1/2)\cos(2\pi i/1000))$. I created this image by running my program on a Linux operating system.

This image shows 1,000 line segments. For each $i=1,2,3,\ldots,1000$ the endpoints of the $i$-th line segment are: $(-\sin(10\pi i/1000), -\cos(2\pi i/1000))$ and $((-1/2)\sin(12\pi i/1000), (-1/2)\cos(2\pi i/1000))$. I created this image by running my program on a Linux operating system.

This image contains a heart-like figure. It shows 601 line segments. For each $i=1, 2, 3, \ldots. , 601$ the endpoints of the $i$-th line segment are:

$(\sin(10\pi (i+699)/2000), \cos(8\pi (i+699)/2000))$

and

$(\sin(12\pi (i+699)/2000), \cos(10\pi (i+699)/2000))$.

I created this image by running my program.

This image is like a bird in flight. It shows 2000 line segments. For each $i=1, 2, 3, \ldots , 2000$ the endpoints of the $i$-th line segment are:

$(3(\sin(2\pi i/2000)^3), -\cos(8\pi i/2000))$

and

$((3/2)(\sin(2\pi i/2000)^3), (-1/2)\cos(6\pi i/2000))$.

I created this image by running my program.

This image shows 10,000 circles. For each $i=1,2,3,\ldots,10{,}000$ the center of the $i$-th circle is:

$((\cos(38\pi i/10{,}000))^3, \sin(10\pi i/10{,}000))$ and the radius of the $i$-th circle is: $(1/3)(\sin(16\pi i/10{,}000))^2$.

This image is like a bird in flight. It shows 500 line segments. For each $i=1,2,3,\ldots,500$ the endpoints of the $i$-th line segment are: $((3/2)(\sin((2\pi i/500)+(\pi /3)))^7, (1/4)(\cos(6\pi i/500))^2)$ and

$((1/5)\sin((6\pi i/500)+(\pi /5)), (-2/3)(\sin((2\pi i/500)-(\pi /3)))^2).$

This image is like a sailing boat. It shows 2,000 line segments. For each $k=1,2,3,\ldots,2000$ the endpoints of the $k$-th line segment are: $(\cos(6\pi k/2000)-i \cos(12\pi k/2000))e^{3\pi i/4}$ and $(\sin((4\pi k/2000)+(\pi /8))+i \sin((2\pi k/2000)+(\pi /3)))e^{3\pi i/4}.$

This image is like a fish. It shows 1,000 line segments. For $i=1,2,3,\ldots,1000$ the endpoints of the $i$-th line segment are: $(-2\cos(4\pi i/1000), (1/2)(\cos(6\pi i/1000))^3)$ and $(-(2/15)\sin(6\pi i/1000), (4/5)\sin(2\pi i/1000))$.

This image shows 4000 circles. For $k=1,2,3,\ldots,4000$ the center of the $k$-th circle is $(X(k), Y(k))$ and the radius of the $k$-th circle is $R(k)$, where

$\begin{array}{llll}X(k)&=&&(2k/4000)+(1/28)\sin(42\pi k/4000)\\&&+ &(1/9)((\sin(21\pi k/4000))^8)\\&&+ &(1/4)((\sin(21\pi k/4000))^6)*\\ && &\sin((2\pi /5)(k/4000)^{12}),\end{array}$

$\begin{array}{llll}Y(k)&=&&(1/4)(k/4000)^2\\&&+&(1/4)(((\sin(21\pi k/4000))^5) \\&& + &(1/28)\sin(42\pi k/4000))*\\&&&(\cos((\pi /2)(k/4000)^{12})),\end{array}$

$\begin{array}{lll}R(k)& =& (1/170)+(1/67)((\sin(42\pi k/4000))^2)*\\& &(1-((\cos(21\pi k/4000))^4)).\end{array}$

This image shows 40,000 circles. For $k=1,2,3,\ldots,40{,}000$ the center of the $k$-th circle is $(X(k), Y(k))$ and the radius of the $k$-th circle is $R(k)$, where

$\begin{array}{lll}X(k)&=&(6/5)((\cos(141\pi k/40{,}000))^9)(1-(1/2)(\sin(\pi k/40{,}000))^3)*\\&&(1-(1/4)((\cos(2\pi k/40{,}000))^{30})(1+(2/3)(\cos(30\pi k/40{,}000))^{20})-\\&&((\sin(2\pi k/40{,}000))^{10})((\sin(6\pi k/40{,}000))^{10})*\\&&((1/5)+(4/5)(\cos(24\pi k/40{,}000))^{20})),\end{array}$

$\begin{array}{lll}Y(k)&=&\cos(2\pi k/40{,}000)((\cos(141\pi k/40{,}000))^2)(1+(1/4)((\cos(\pi k/40{,}000))^{24})*\\&&((\cos(3\pi k/40{,}000))^{24})(\cos(19\pi k/40{,}000))^{24}),\end{array}$

$\begin{array}{lll}R(k)&=&(1/100)+(1/40)(((\cos(2820\pi k/40{,}000))^6)+\\&&(\sin(141\pi k/40{,}000))^2)(1-((\cos(\pi k/40{,}000))^{16})*\\&&((\cos(3\pi k/40{,}000))^{16})(\cos(12\pi k/40{,}000))^{16}).\end{array}$

This image shows 40,000 circles. For $k=1,2,3,\ldots,40{,}000$ the center of the $k$-th circle is $(X(k), Y(k))$ and the radius of the $k$-th circle is $R(k)$, where

$\begin{array}{lll}X(k)&=&(3/2)((\cos(141\pi k/40{,}000))^9)*\\&&(1-(1/2)\sin(\pi k/40{,}000))*\\&&(1-(1/4)((\cos(2\pi k/40{,}000))^{30})*\\&&(1+(\cos(32\pi k/40{,}000))^{20}))*\\&&(1-(1/2)((\sin(2\pi k/40{,}000))^{30})*\\&&((\sin(6\pi k/40{,}000))^{10})*\\&&((1/2)+(1/2)(\sin(18\pi k/40{,}000))^{20})),\end{array}$

$\begin{array}{lll}Y(k)&=&\cos(2\pi k/40{,}000)*\\&&((\cos(141\pi k/40{,}000))^2)*\\&&(1+(1/4)((\cos(\pi k/40{,}000))^{24})*\\&&((\cos(3\pi k/40{,}000))^{24})*\\&&(\cos(21\pi k/40{,}000))^{24}),\end{array}$

$\begin{array}{lllcl}R(k)&=&(1/100)&+&(1/40)(((\cos(141\pi k/40{,}000))^{14})+(\sin(141\pi k/40{,}000))^6)*\\&&&&(1-((\cos(\pi k/40{,}000))^{16})((\cos(3\pi k/40{,}000))^{16})*\\&&&&(\cos(12\pi k/40{,}000))^{16}).\end{array}$

This image shows 2500 ellipses. For each $k=1,2,3,\ldots,2500$ the foci of the $k$-th ellipse are:

$A(k)+iB(k)+C(k)e^{68\pi i k/2500}$

and

$A(k)+iB(k)-C(k)e^{68\pi i k/2500}$

and the eccentricity of the $k$-th ellipse is $D(k)$, where

$A(k)=(-3/2)((\sin(2\pi k/2500))^3)+(3/10)((\sin(2\pi k/2500))^7),$

$B(k)=\sin((2\pi k/1875)+(\pi /6))+(1/4)(\sin((2\pi k/1875)+(\pi /6)))^3,$

$C(k)=(2/15)-(1/8)\cos(\pi k/625),$

$D(k)=(49/50)-(1/7)(\sin(4\pi k/2500))^4.$

This image shows 8,000 ellipses. For each $k=1,2,3,\ldots,8000$ the foci of the $k$-th ellipse are:

$A(k)+iB(k)+C(k)e^{300\pi ik/8000}$

and

$A(k)+iB(k)-C(k)e^{300\pi ik/8000}$

and the eccentricity of the $k$-th ellipse is $D(k)$, where

$\begin{array}{llll}A(k)&=&&(3/4)\sin(2\pi k/8000)\cos(6\pi k/8000)\\&&+&(1/4)\sin(28\pi k/8000),\end{array}$

$\begin{array}{llll}B(k)&=&&(3/4)\cos(2\pi k/8000)\cos(8\pi k/8000)\\&&+&(1/4)\cos(28\pi k/8000),\end{array}$

$\begin{array}{lll}C(k)&=&(1/18)+(1/20)\cos(24\pi k/8000),\end{array}$

$ \begin{array}{lll} D(k)&=&(49/50)-(1/7)(\sin(10\pi k/8000))^4.\end{array}$

This image shows 5600 ellipses. For each $k=1,2,3,\ldots,5600$ the foci of the $k$-th ellipse are:

$A(k)+iB(k)+C(k)e^{44\pi ik/5600}$

and

$A(k)+iB(k)-C(k)e^{44\pi ik/5600}$

and the eccentricity of the $k$-th ellipse is $D(k)$, where

$\begin{array}{lll}A(k)&=&(\cos(28\pi k/5600))^3,\end{array}$

$\begin{array}{llll}B(k)&=&&\sin(28\pi k/5600)\\&&+&(1/4)(\cos((14\pi k/5600)-(7\pi /4)))^{18},\end{array}$

$\begin{array}{lll}C(k)&=&(1/70)+(1/6)+(1/6)\sin(28\pi k/5600),\end{array}$

$\begin{array}{lll}D(k)&=&(399/400)-(1/6)(\sin(28\pi k/5600))^8.\end{array}$

This image shows all circles of the form:

$(x-A(k))^2+(y-B(k))^2=(R(k))^2$, for $k=-10000, -9999, \ldots , 9999, 10000$, where

$\begin{array}{lllcl}A(k)&=&(3k/20{,}000)&+&\sin((\pi /2)(k/10{,}000)^7)((\cos(41\pi k/10{,}000))^6)\\&&&+&(1/4)((\cos(41\pi k/10{,}000))^{16})((\cos(\pi k/20{,}000))^{12})\sin(6\pi k/10{,}000),\end{array}$

$\begin{array}{lll}B(k)&=&-\cos((\pi /2)(k/10{,}000)^7)*\\&&(1+(3/2)(\cos(\pi k/20{,}000)\cos(3\pi k/20{,}000))^6)*\\&&((\cos(41\pi k/10{,}000))^6)+(1/2)(\cos(3\pi k/100{,}000)\cos(9\pi k/100{,}000)\cos(18\pi k/100{,}000))^{10},\end{array}$

$\begin{array}{lllcl}R(k)&=&(1/50)&+&(1/10)((\sin(41\pi k/10{,}000)\sin(9\pi k/100{,}000))^2)\\&&&+&(1/20)((\cos(41\pi k/10{,}000))^2)((\cos(\pi k/20{,}000))^{10}).\end{array}$