Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Analysis of Stochastic Partial Differential Equations

About this Title

Davar Khoshnevisan, University of Utah, Salt Lake City, UT

Publication: CBMS Regional Conference Series in Mathematics
Publication Year: 2014; Volume 119
ISBNs: 978-1-4704-1547-1 (print); 978-1-4704-1712-3 (online)
DOI: https://doi.org/10.1090/cbms/119
MathSciNet review: MR3222416
MSC: Primary 60H15; Secondary 35R60, 60H30

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • Stochastic Partial Differential Equations: Six Perspectives (Rene A. Carmona and Boris Rozovskii, eds.), Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 153–181.
  • P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), no. 5, 1492–1505.
  • Heikki Arponen and Peter Horvai, Dynamo effect in the Kraichnan magnetohydrodynamic turbulence, J. Stat. Phys. 129 (2007), no. 2, 205–239.
  • Robert B. Ash and Melvin F. Gardner, Topics in Stochastic Processes, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975, Probability and Mathematical Statistics, Vol. 27.
  • V. V. Baklan, On the existence of solutions of stochastic equations in Hilbert space, Dopovidi Akad. Nauk UkraĂŻn. RSR 1963 (1963), 1299–1303.
  • —, Variational differential equations and Markov processes in Hilbert space, Dokl. Akad. Nauk SSSR 159 (1964), 707–710.
  • V. V. Baklan and A. D. Ć ataĆĄvili, Transformations of Gaussian measures by non-linear mappings in Hilbert space, Dopovidi Akad. Nauk UkraĂŻn. RSR 1965 (1965), 1115–1117.
  • P. H. Baxendale and B. L. RozovskiÄ­, Kinematic dynamo and intermittence in a turbulent flow, Geophys. Astrophys. Fluid Dynam. 73 (1993), no. 1-4, 33–60, Magnetohydrodynamic stability and dynamos (Chicago, IL, 1992).
  • Ja. I. Belopolâ€Čskaja and Ju. L. Dalecâ€ČkiÄ­, Diffusion processes in smooth Banach spaces and manifolds. I, Trudy Moskov. Mat. Obshch. 37 (1978), 107–141, 270.
  • G. Ben Arous, A. Dembo, and A. Guionnet, Aging of spherical spin glasses, Probab. Theory Related Fields 120 (2001), no. 1, 1–67.
  • A. Bensoussan and R. Temam, Équations aux dĂ©rivĂ©es partielles stochastiques non linĂ©aires. I, Israel J. Math. 11 (1972), 95–129.
  • Lorenzo Bertini and Nicoletta Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Statist. Phys. 78 (1995), no. 5-6, 1377–1401.
  • Jared C. Bronski and Richard M. McLaughlin, Rigorous estimates of the tails of the probability distribution function for the random linear shear model, J. Statist. Phys. 98 (2000), no. 3-4, 897–915.
  • Eric Carlen and Paul KrĂ©e, $L^p$ estimates on iterated stochastic integrals, Ann. Probab. 19 (1991), no. 1, 354–368.
  • RenĂ© A. Carmona and S. A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125.
  • N. N. Čencov, Wiener random fields depending on several parameters, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 607–609.
  • Le Chen and Robert C. Dalang, The nonlinear stochastic heat equation with rough initial data: A summary of some new results, preprint available at http://arxiv.org/pdf/1210.1690v1.pdf, 2012.
  • Pao Liu Chow, Function-space differential equations associated with a stochastic partial differential equation, Indiana Univ. Math. J. 25 (1976), no. 7, 609–627.
  • Pao-Liu Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.
  • K. L. Chung and P. Erdös, On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc. 72 (1952), 179–186.
  • Kai-Lai Chung and Paul Erdös, On the lower limit of sums of independent random variables, Ann. of Math. (2) 48 (1947), 1003–1013.
  • Daniel Conus, Moments for the parabolic Anderson model: on a result by Hu and Nualart, preprint available at http://www.lehigh.edu/ dac311/Conus_PAM_moments.pdf, 2011.
  • Daniel Conus, Mathew Joseph, and Davar Khoshnevisan, Correlation-length bounds, and estimates for intermittent islands in parabolic spdes, Electron. J. Probab. 17 (2012), no. 102, 1–15.
  • —, On the chaotic character of the stochastic heat equation, before the onset of intermittency, Ann. Probab. 41 (2013), no. 3B, 2225–2260.
  • Daniel Conus and Davar Khoshnevisan, Weak nonmild solutions to some SPDEs, Illinois J. Math. 54 (2010), no. 4, 1329–1341 (2012).
  • —, On the existence and position of the farthest peaks of a family of stochastic heat and wave equations, Probab. Theory Related Fields 152 (2012), no. 3-4, 681–701.
  • Ivan Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76.
  • Ruth F. Curtain and Peter L. Falb, Ito’s lemma in infinite dimensions, J. Math. Anal. Appl. 31 (1970), 434–448.
  • —, Stochastic differential equations in Hilbert space, J. Differential Equations 10 (1971), 412–430.
  • G. Da Prato, S. KwapieƄ, and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), no. 1, 1–23.
  • G. Da Prato and J. Zabczyk, A note on semilinear stochastic equations, Differential Integral Equations 1 (1988), no. 2, 143–155.
  • Giuseppe Da Prato and Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.
  • Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao, A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, vol. 1962, Springer-Verlag, Berlin, 2009, Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha.
  • Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29 pp. (electronic).
  • Robert C. Dalang and Carl Mueller, Some non-linear S.P.D.E.’s that are second order in time, Electron. J. Probab. 8 (2003), no. 1, 21 pp. (electronic).
  • Robert C. Dalang and LluĂ­s Quer-Sardanyons, Stochastic integrals for spde’s: a comparison, Expo. Math. 29 (2011), no. 1, 67–109.
  • Ju. L. DaleckiÄ­ and S. V. Fomin, Differential equations for distributions in infinite-dimensional spaces, Trudy Sem. Petrovsk. (1978), no. 4, 45–64.
  • Yu. L. Dalecky and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Space, Mathematics and its Applications (Soviet Series), vol. 76, Kluwer Academic Publishers Group, Dordrecht, 1991, Translated from the Russian, With additional material by V. R. Steblovskaya, Yu. V. Bogdansky [Yu. V. BogdanskiÄ­] and N. Yu. Goncharuk.
  • Yu. L. DaletskiÄ­ and S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, “Nauka”, Moscow, 1983.
  • Burgess Davis, On the $L^{p}$ norms of stochastic integrals and other martingales, Duke Math. J. 43 (1976), no. 4, 697–704.
  • D. A. Dawson, Stochastic evolution equations, Math. Biosci. 15 (1972), 287–316.
  • —, Stochastic evolution equations and related measure processes, J. Multivariate Anal. 5 (1975), 1–52.
  • —, Geostochastic calculus, Canad. J. Statist. 6 (1978), no. 2, 143–168.
  • Donald A. Dawson and Habib Salehi, Spatially homogeneous random evolutions, J. Multivariate Anal. 10 (1980), no. 2, 141–180.
  • J. L. Doob, Stochastic Processes, John Wiley & Sons Inc., New York, 1953.
  • Joseph L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1984 edition.
  • Leif Döring and Mladen Savov, An application of renewal theorems to exponential moments of local times, Electron. Commun. Probab. 15 (2010), 263–269.
  • P. ErdƑs and A. RĂ©nyi, On Cantor’s series with convergent $\sum 1/q_{n}$, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 2 (1959), 93–109.
  • William Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons Inc., New York, 1966.
  • Mohammud Foondun and Davar Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab. 14 (2009), no. 21, 548–568.
  • Mohammud Foondun, Davar Khoshnevisan, and Pejman Mahboubi, Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion, in preparation, 2013.
  • Tadahisa Funaki, Random motion of strings and related stochastic evolution equations, Nagoya Math. J. 89 (1983), 129–193.
  • David Galloway, Fast Dynamos, Advances in nonlinear dynamos, Fluid Mech. Astrophys. Geophys., vol. 9, Taylor & Francis, London, 2003, pp. 37–59.
  • A. M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 2, vi, 67–116 (English, with French summary). MR 414802
  • A. M. Garsia, E. Rodemich, and H. Rumsey Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/71), 565–578. MR 267632, DOI 10.1512/iumj.1970.20.20046
  • Adriano M. Garsia, Continuity properties of Gaussian processes with multidimensional time parameter, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory (Berkeley, Calif.), Univ. California Press, 1972, pp. 369–374.
  • Leszek Gawarecki and Vidyadhar Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Probability and its Applications (New York), Springer, Heidelberg, 2011.
  • Nicos Georgiou, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu, Semi-discrete semi-linear parabolic SPDEs, 2013, in preparation.
  • J. D. Gibbon and E. S. Titi, Cluster formation in complex multi-scale systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2062, 3089–3097.
  • Martin Hairer, Solving the KPZ equation, Ann. Math. 178 (2013), no. 2, 559–664.
  • Yaozhong Hu and David Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields 143 (2009), no. 1-2, 285–328.
  • G. A. Hunt, Random Fourier transforms, Trans. Amer. Math. Soc. 71 (1951), 38–69.
  • Kiyosi ItĂŽ, Stochastic analysis in infinite dimensions, Stochastic Analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978), Academic Press, New York, 1978, pp. 187–197.
  • —, Continuous additive $\mathscr {S}^{\prime }$-processes, Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), Lecture Notes in Control and Information Sci., vol. 25, Springer, Berlin, 1980, pp. 143–151.
  • —, Distribution-valued processes arising from independent Brownian motions, Math. Z. 182 (1983), no. 1, 17–33.
  • Kiyosi Itƍ, Stochastic differential equations in infinite dimensions, Theory and Application of Random Fields (Bangalore, 1982), Lecture Notes in Control and Inform. Sci., vol. 49, Springer, Berlin, 1983, pp. 122–125.
  • —, Foundations of Stochastic Differential Equations in Infinite-Dimensional Spaces, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 47, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.
  • Koichiro Iwata, An infinite-dimensional stochastic differential equation with state space $C(\textbf {R})$, Probab. Theory Related Fields 74 (1987), no. 1, 141–159. MR 863723, DOI 10.1007/BF01845644
  • Mathew Joseph, Davar Khoshnevisan, and Carl Mueller, Strong invariance and noise-comparison principles for some parabolic stochastic PDEs, in preparation, 2013.
  • Mehran Kardar, Georgio Parisi, and Zhang Yi-Cheng, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), no. 9, 889–892.
  • Robert Kaufman and Jang Mei Wu, Parabolic potential theory, J. Differential Equations 43 (1982), no. 2, 204–234.
  • Davar Khoshnevisan and Kunwoo Kim, Non-linear noise excitation and intermittency under high disorder, preprint available at http://arxiv.org/abs/1302.1621, 2013.
  • —, Non-linear noise excitation of intermittent stochastic PDEs and the topology of LCA groups, preprint available at http://arxiv.org/abs/1302.3266, 2013.
  • Davar Khoshnevisan, Jason Swanson, Yimin Xiao, and Liang Zhang, Local properties of parabolic stochastic partial differential equations, in preparation, 2013.
  • Simon Kochen and Charles Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964), 248–251.
  • A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann. 104 (1931), no. 1, 415–458.
  • A.N. Kolmogorov, Wienersche spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 115–118.
  • Peter Kotelenez, Stochastic Ordinary and Stochastic Partial Differential Equations, Stochastic Modelling and Applied Probability, vol. 58, Springer, New York, 2008, Transition from microscopic to macroscopic equations.
  • N. V. Krylov and B. L. RozovskiÄ­, The Cauchy problem for linear stochastic partial differential equations, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 6, 1329–1347, 1448.
  • —, ItĂŽ equations in Banach spaces and strongly parabolic stochastic partial differential equations, Dokl. Akad. Nauk SSSR 249 (1979), no. 2, 285–289.
  • —, Stochastic evolution equations, Current Problems in Mathematics, Vol. 14 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979, pp. 71–147, 256.
  • Nicolai Krylov, A brief overview of the $L_p$-theory of SPDEs, Theory Stoch. Process. 14 (2008), no. 2, 71–78.
  • Nicolai V. Krylov and Boris L. Rozovskii, Stochastic Evolution Equations [mr0570795], Stochastic Differential Equations: Theory and Applications, Interdiscip. Math. Sci., vol. 2, World Sci. Publ., Hackensack, NJ, 2007, pp. 1–69.
  • Hui Hsiung Kuo, Stochastic integrals in abstract Wiener space, Pacific J. Math. 41 (1972), 469–483.
  • —, Differential and stochastic equations in abstract Wiener space, J. Functional Analysis 12 (1973), 246–256.
  • —, On operator-valued stochastic integrals, Bull. Amer. Math. Soc. 79 (1973), 207–210.
  • —, Stochastic integrals in abstract Wiener space. II. Regularity properties, Nagoya Math. J. 50 (1973), 89–116.
  • Hui Hsiung Kuo and M. Ann Piech, Stochastic integrals and parabolic equations in abstract Wiener space, Bull. Amer. Math. Soc. 79 (1973), 478–482.
  • John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78.
  • —, Wiener’s test and Markov chains, J. Math. Anal. Appl. 6 (1963), 58–66.
  • Pedro Lei and David Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett. 79 (2009), no. 5, 619–624.
  • Pejman Mahboubi, Intermittency of the Malliavin Derivatives and Regularity of the Densities for a Stochastic Heat Equation, Ph.D. thesis, University of California, Los Angeles, 2012.
  • Andrew J. Majda, The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions, Phys. Fluids A 5 (1993), no. 8, 1963–1970.
  • Benoit B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982, Schriftenreihe fĂŒr den Referenten. [Series for the Referee].
  • Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437.
  • V. Mandrekar, Stochastic integration with respect to Gaussian processes, Measure Theory, Oberwolfach 1983 (Oberwolfach, 1983), Lecture Notes in Math., vol. 1089, Springer, Berlin, 1984, pp. 288–293.
  • M. B. Marcus, Hölder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc. 134 (1968), 29–52.
  • Michael B. Marcus and Jay Rosen, $p$-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Probab. 20 (1992), no. 4, 1685–1713.
  • Robert Marcus, Parabolic ItĂŽ equations with monotone nonlinearities, J. Functional Analysis 29 (1978), no. 3, 275–286. MR 512245, DOI 10.1016/0022-1236(78)90031-9
  • Robert Marcus, Stochastic diffusion on an unbounded domain, Pacific J. Math. 84 (1979), no. 1, 143–153. MR 559632
  • Michel MĂ©tivier and Michel Viot, On weak solutions of stochastic partial differential equations, Stochastic Analysis (Paris, 1987), Lecture Notes in Math., vol. 1322, Springer, Berlin, 1988, pp. 139–150.
  • Stanislav A. Molchanov, Ideas in the theory of random media, Acta Appl. Math. 22 (1991), no. 2-3, 139–282.
  • Carl Mueller, On the support of solutions to the heat equation with noise, Stochastics Stochastics Rep. 37 (1991), no. 4, 225–245.
  • David Nualart, The Malliavin Calculus and Related Topics, second ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.
  • —, Malliavin Calculus and Its Applications, CBMS Regional Conference Series in Mathematics, vol. 110, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2009.
  • R.E.A.C. Paley and A. Zygmund, A note on analytic functions on the circle, Math. Proc. Cambridge Phil. Soc. 28 (1932), no. 3, 266–272.
  • —, On some series of functions, (3), Math. Proc. Cambridge Phil. Soc. 28 (1932), no. 2, 190–205.
  • E. Pardoux, Équations aux dĂ©rivĂ©es partielles stochastiques de type monotone, SĂ©minaire sur les Équations aux DĂ©rivĂ©es Partielles (1974–1975), III, Exp. No. 2, CollĂšge de France, Paris, 1975, p. 10.
  • É. Pardoux, Stochastic partial differential equations, a review, Bull. Sci. Math. 117 (1993), no. 1, 29–47.
  • Étienne Pardoux, Sur des Ă©quations aux dĂ©rivĂ©es partielles stochastiques monotones, C. R. Acad. Sci. Paris SĂ©r. A-B 275 (1972), A101–A103.
  • G. Parisi and Yong Shi Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), no. 4, 483–496. MR 626795
  • S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with LĂ©vy Noise, Encyclopedia of Mathematics and its Applications, vol. 113, Cambridge University Press, Cambridge, 2007, An evolution equation approach.
  • Loren D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), no. 2, 309–330.
  • Jan PospĂ­ĆĄil and Roger Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stoch. Anal. Appl. 25 (2007), no. 3, 593–611.
  • Claudia PrĂ©vĂŽt and Michael Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007.
  • Clifford Qualls and Hisao Watanabe, An asymptotic 0–1 behavior of Gaussian processes, Ann. Math. Statist. 42 (1971), 2029–2035.
  • Jeremy Quastel, An Introduction to KPZ, 2012, Arizona School of Analysis and Mathematical Physics, Tucson, Arizona, March 12-16, 2012. E-print available at http://math.arizona.edu/ mathphys/school$\_$2012/notes.html.
  • Daniel Revuz and Marc Yor, Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1991.
  • L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance 7 (1997), no. 1, 95–105.
  • Marta Sanz-SolĂ©, Malliavin Calculus, Fundamental Sciences, EPFL Press, Lausanne, 2005, With applications to stochastic partial differential equations.
  • RenĂ© L. Schilling, Sobolev embedding for stochastic processes, Expo. Math. 18 (2000), no. 3, 239–242. MR 1763890
  • I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787–793.
  • —, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841.
  • —, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536.
  • S. F. Shandarin and Ya. B. Zelâ€Čdovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys. 61 (1989), no. 2, 185–220.
  • Qi-Man Shao, $p$-variation of Gaussian processes with stationary increments, Studia Sci. Math. Hungar. 31 (1996), no. 1-3, 237–247.
  • Tokuzo Shiga and Akinobu Shimizu, Infinite-dimensional stochastic differential equations and their applications, J. Math. Kyoto Univ. 20 (1980), no. 3, 395–416.
  • Jason Swanson, Variations of the solution to a stochastic heat equation, Ann. Probab. 35 (2007), no. 6, 2122–2159. MR 2353385, DOI 10.1214/009117907000000196
  • GĂĄbor SzegƑ, Orthogonal Polynomials, fourth ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.
  • Hiroshi Tanaka, Note on continuous additive functionals of the $1$-dimensional Brownian path, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/1963), 251–257.
  • S. J. Taylor and N. A. Watson, A Hausdorff measure classification of polar sets for the heat equation, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 2, 325–344.
  • Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174.
  • A. D. Ventcelâ€Č, On continuous additive functionals of a multidimensional Wiener process, Dokl. Akad. Nauk SSSR 142 (1962), 1223–1226.
  • Michel Viot, Solution en loi d’une Ă©quation aux dĂ©rivĂ©es partielles stochastique non linĂ©aire: mĂ©thode de compacitĂ©, C. R. Acad. Sci. Paris SĂ©r. A 278 (1974), 1185–1188.
  • —, Solution en loi d’une Ă©quation aux dĂ©rivĂ©es partielles stochastique non linĂ©aire: mĂ©thode de monotonie, C. R. Acad. Sci. Paris SĂ©r. A 278 (1974), 1405–1408.
  • —, Équations aux dĂ©rivĂ©es partielles stochastiques: formulation faible, SĂ©minaire sur les Équations aux DĂ©rivĂ©es Partielles (1974–1975), III, Exp. No. 1, CollĂšge de France, Paris, 1975, p. 16.
  • J. von Neumann and I. J. Schoenberg, Fourier integrals and metric geometry, Trans. Amer. Math. Soc. 50 (1941), 226–251.
  • John B. Walsh, An Introduction to Stochastic Partial Differential Equations, École d’étĂ© de ProbabilitĂ©s de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439.
  • N. A. Watson, Uniqueness and representation theorems for parabolic equations, J. London Math. Soc. (2) 8 (1974), 311–321.
  • —, Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. (3) 33 (1976), no. 2, 251–298.
  • N. Wiener, Differential space, J. Math. and Physics 58 (1923), 131–174.
  • Norbert Wiener, The Homogeneous Chaos, Amer. J. Math. 60 (1938), no. 4, 897–936.
  • A. M. Yaglom, Correlation theory of processes with random stationary $n$th increments, Mat. Sb. N.S. 37(79) (1955), 141–196.
  • —, Outline of some topics in linear extrapolation of stationary random processes, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, pp. 259–278.
  • M. Yor, Existence et unicitĂ© de diffusions Ă  valeurs dans un espace de Hilbert, Ann. Inst. H. PoincarĂ© Sect. B (N.S.) 10 (1974), 55–88.
  • —, Sur les intĂ©grales stochastiques Ă  valeurs dans un espace de Banach, Ann. Inst. H. PoincarĂ© Sect. B (N.S.) 10 (1974), 31–36.
  • Ya. B. Zelâ€Čdovich, S. A. Molchanov, A. A. RuzmaÄ­kin, and D. D. Sokoloff, Intermittency, diffusion and generation in a nonstationary random medium, Mathematical Physics Reviews, Vol. 7, Soviet Sci. Rev. Sect. C Math. Phys. Rev., vol. 7, Harwood Academic Publ., Chur, 1988, pp. 3–110.
  • Ya. B. Zelâ€Čdovich, S. A. Molchanov, A. A. RuzmaÄ­kin, and D. D. Sokolov, Intermittency in random media, Uspekhi Fiz. Nauk 152 (1987), no. 1, 3–32.
  • Ya. B. Zelâ€Čdovich, A. A. RuzmaÄ­kin, and D. D. Sokoloff, The Almighty Chance, World Scientific Lecture Notes in Physics, vol. 20, World Scientific Publishing Co. Inc., River Edge, NJ, 1990, Translated from the Russian by Anvar Shukurov.