# Topological Methods in Nonlinear Functional Analysis

### About this Title

**S. P. Singh**, **S. Thomeier** and **B. Watson**, Editors

Publication: Contemporary Mathematics

Publication Year
1983: Volume 21

ISBNs: 978-0-8218-5023-7 (print); 978-0-8218-7607-7 (online)

DOI: http://dx.doi.org/10.1090/conm/021

MathSciNet review: 729501

### Table of Contents

**Front/Back Matter**

**Articles**

- Mieczyslaw Altman – Contractors and fixed points [MR 729502]
- Felix E. Browder – The degree of mapping, and its generalizations [MR 729503]
- Robert F. Brown – Multiple fixed points of compact maps on wedgelike ANRs in Banach spaces [MR 729504]
- Edward Fadell and Sufian Husseini – The Nielsen number on surfaces [MR 729505]
- Gilles Fournier – A good class of eventually condensing maps [MR 729506]
- Kazimierz Goebel and W. A. Kirk – Iteration processes for nonexpansive mappings [MR 729507]
- M. von Golitschek and E. W. Cheney – The best approximation of bivariate functions by separable functions [MR 729508]
- Renato Guzzardi – Positive solutions of operator equations in the nondifferentiable case [MR 729509]
- D. S. Jaggi – On fixed points of nonexpansive mappings [MR 729510]
- Mario Martelli – Large oscillations of forced nonlinear differential equations [MR 729511]
- S. A. Naimpally, K. L. Singh and J. H. M. Whitfield – Fixed points and sequences of iterates in locally convex spaces [MR 729512]
- P. L. Papini – Fixed point theorems and Jung constant in Banach spaces [MR 729513]
- W. V. Petryshyn – Some results on multiple positive fixed points of multivalued condensing maps [MR 729514]
- Simeon Reich – Some problems and results in fixed point theory [MR 729515]
- B. E. Rhoades – Contractive definitions revisited [MR 729516]
- Helga Schirmer – Fixed points, antipodal points and coincidences of $n$-acyclic valued multifunctions [MR 729517]
- V. M. Sehgal, S. P. Singh and B. Watson – A coincidence theorem for topological vector spaces [MR 729518]
- V. M. Sehgal and Charlie Waters – Some random fixed point theorems [MR 729519]