# Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics

### About this Title

**David Carfì**, *University of Messina, Messina, Italy*, **Michel L. Lapidus**, *University of California, Riverside, Riverside, CA*, **Erin P. J. Pearse**, *California Polytechnic State University, San Luis Obispo, CA* and **Machiel van Frankenhuijsen**, *Utah Valley University, Orem, UT*, Editors

Publication: Contemporary Mathematics

Publication Year
2013: Volume 600

ISBNs: 978-0-8218-9147-6 (print); 978-1-4704-1082-7 (online)

DOI: http://dx.doi.org/10.1090/conm/600

### Table of Contents

**Front/Back Matter**

**Articles**

- Qi-Rong Deng, Ka-Sing Lau and Sze-Man Ngai – Separation Conditions for Iterated Function Systems with Overlaps
- Driss Essouabri and Ben Lichtin – $k-$point Configurations of Discrete Self-Similar Sets
- Hafedh Herichi and Michel L. Lapidus – Fractal Complex Dimensions, Riemann Hypothesis and Invertibility of the Spectral Operator
- Naotaka Kajino – Analysis and Geometry of the Measurable Riemannian Structure on the Sierpiński Gasket
- Sabrina Kombrink – A Survey on Minkowski Measurability of Self-Similar and Self-Conformal Fractals in $\mathbb R^d$
- Michel L. Lapidus, Lũ’ Hùng and Machiel van Frankenhuijsen – Minkowski Measurability and Exact Fractal Tube Formulas for $p$-Adic Self-Similar Strings
- Michel L. Lapidus, Erin P. J. Pearse and Steffen Winter – Minkowski Measurability Results for Self-Similar Tilings and Fractals with Monophase Generators
- Rolando de Santiago, Michel L. Lapidus, Scott A. Roby and John A. Rock – Multifractal Analysis via Scaling Zeta Functions and Recursive Structure of Lattice Strings
- Michel L. Lapidus, John A. Rock and Darko Žubrinić – Box-Counting Fractal Strings, Zeta Functions, and Equivalent Forms of Minkowski Dimension
- Eugen Mihailescu and Mariusz Urbański – Hausdorff Dimension of the Limit Set of Countable Conformal Iterated Function Systems with Overlaps
- Lars Olsen – Multifractal Tubes: Multifractal Zeta-Functions, Multifractal Steiner Formulas and Explicit Formulas
- Calum Spicer, Robert S. Strichartz and Emad Totari – Laplacians on Julia Sets III: Cubic Julia Sets and Formal Matings
- Hui Rao, Huo-Jun Ruan and Yang Wang – Lipschitz Equivalence of Self-Similar Sets: Algebraic and Geometric Properties
- Machiel van Frankenhuijsen – Riemann Zeros in Arithmetic Progression
- Martina Zähle – Curvature Measures of Fractal Sets