Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Discrete Analogues in Harmonic Analysis: Bourgain, Stein, and Beyond

About this Title

Ben Krause, King’s College, London, UK

Publication: Graduate Studies in Mathematics
Publication Year: 2022; Volume 224
ISBNs: 978-1-4704-6857-6 (print); 978-1-4704-7175-0 (online)
DOI: https://doi.org/10.1090/gsm/224

ePUB View full volume as ePUB

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

Harmonic analytic preliminaries

Discrete analogues in harmonic analyis: Radon transforms, I

Discrete analogues in harmonic analysis: Radon transforms, II

Discrete analogues in harmonic analysis: Maximally modulated singular integrals

Discrete analogues in harmonic analysis: An introduction to multilinear theory

Conclusion and appendices

References [Enhancements On Off] (What's this?)

References
  • Arkhipov, G.; Oskolkov, K. A special trigonometric series and its applications. Mat. Sb. (N.S.) 134(176) (1987), no. 2, 147–157, 287; translation in Math. USSR-Sb. 62 (1989), no. 1, 145–155
  • Assani, I. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 103 (1998), 111-124.
  • Assani, I. Pointwise convergence of nonconventional averages. Colloq. Math. 102 (2005), no. 2, 245-262.
  • Assani, I. Pointwise convergence of ergodic averages along cubes. J. Anal. Math.110 (2010), 241–269.
  • Austin, T. On the norm convergence of non-conventional ergodic averages. Ergodic Theory Dynam. Systems 30 (2010), no. 2, 321–338.
  • Bellow, A. Two Problems, Lecture Notes in Math. 945, Springer-Verlag, Berlin, pp. 429-431.
  • Bellow, A.; Losert, V. On sequences of density zero in ergodic theory, Contemp. Math. 26 (1984), 49-60.
  • Berend, B. Joint ergodicity and mixing. J. Analyse Math. 45 (1985), 255–284.
  • Berend, B. Multiple ergodic theorems. J. Analyse Math. 50 (1988), 123–142.
  • Bergelson, V. Ergodic Ramsey theory—an update. Ergodic theory of $\mathbb {Z}^d$ actions. (Warwick, 1993–1994), 1–61, London Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996.
  • Bergelson, V.; Leibman A. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc., 9(3):725–753, 1996.
  • Birkhoff, G. Proof of the ergodic theorem. Proc Natl Acad Sci USA 17 (12): 656-660 (1931)
  • Bloom, T.; Sisask, O. Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions. Preprint, https://arxiv.org/pdf/2007.03528.pdf
  • Bourgain, J. A Szemerédi type theorem for sets of positive density in $\mathbb {R}^k$. Israel J. Math. 54 (1986), no. 3, 307-316.
  • Bourgain, J. Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 499–502
  • Bourgain, J. On high-dimensional maximal functions associated to convex bodies. Amer. J. Math. 108 (1986), no. 6, 1467–1476.
  • Bourgain, J. Averages in the plane over convex curves and maximal operators. J. Analyse Math. 47 (1986), 69–85.
  • Bourgain, J. A nonlinear version of Roth’s theorem for sets of positive density in the real line. J. Analyse Math. 50 (1988), 169–181.
  • Bourgain, J. On the maximal ergodic theorem for certain subsets of the positive integers. Israel J. Math. 61 (1988), 39-72.
  • Bourgain, J. On the pointwise ergodic theorem on Lp for arithmetic sets. Israel J. Math. 61 (1988), no. 1, 73–84.
  • Bourgain, J. Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci. Publ. Math. (69):5-45, 1989. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein.
  • Bourgain, J. Double recurrence and almost sure convergence. J. Reine Angew. Math. 404 (1990), 140–161.
  • Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156.
  • Bourgain, J. On triples in arithmetic progression. Geom. Funct. Anal. 9 (1999), no. 5, 968–984.
  • Bourgain, J. Roth’s theorem on progressions revisited. J. Anal. Math. 104 (2008), 155–192.
  • Bourgain, J.; Demeter, C.; Guth, L. Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. of Math. (2) 184 (2016), no. 2, 633–682.
  • Bourgain, J.; Mirek, M.; Stein, E.; Wróbel, B. Dimension-free variational estimates on $L^p(\R ^d)$ for symmetric convex bodies. Geom. Funct. Anal. 28 (2018), no. 1, pp. 58–99.
  • Bourgain, J.; Mirek, M.; Stein, E.; Wróbel, B. Dimension-free estimates for discrete Hardy–Littlewood averaging operators over the cubes in $\mathbb Z^d$. Amer. J. Math. 141, (2019), no. 4, pp. 857–905.
  • Bourgain, J.; Mirek, M.; Stein, E.; Wróbel, B. On discrete Hardy–Littlewood maximal functions over the balls in $\mathbb Z^d$: dimension-free estimates. B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2017-2019. Volume I, Lecture Notes in Mathematics 2256, Chapter 8, pp. 127-169.
  • Bourgain, J.; Mirek, M.; Stein, E.; Wróbel, B. On the Hardy–Littlewood maximal functions in high dimensions: Continuous and discrete perspective. P. Ciatti, A. Martini (eds.), Geometric Aspects of Harmonic Analysis. A conference proceedings on the occasion of Fulvio Ricci’s 70th birthday Cortona, Italy, 25-29.06.2018. Springer INdAM Series 45, (2021), pp. 456.
  • Buczolich, Z; Mauldin, D. Concepts behind divergent ergodic averages along the squares. Ergodic Theory and Related Fields, AMS, Contemporary Mathematics Vol. 430 (2007) 41-56
  • Burkholder, D. Martingale transforms. Ann. Math. Statist. 37 1966 1494-1504.
  • Burkholder, D.; David, B.; Gundy, R. Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Semp. Math. Statist. Prob., 2 (1972), 223-240.
  • Calderón, A. Ergodic theory and translation invariant operators. Proc. Nat. Acad. Sci., USA 59 (1968), 349-353
  • Calderón, C. Lacunary spherical means. Illinois J. Math. 23 (1979), 476–484.
  • Carleson, L. On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966) 135–157
  • Christ, M. Weak type (1,1) bounds for rough operators. Ann. of Math. (2) 128 (1988), no. 1, 19–42.
  • Christ, M. Convolution, curvature, and combinatorics: a case study. Internat. Math. Res. Notices 19 (1998), 1033–1048
  • Christ, M. A weak type $(1,1)$ inequality for maximal averages over certain sparse sequences. Preprint, https://arxiv.org/pdf/1108.5664.pdf
  • Chu, Q.; Frantzikinakis, N. Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations. Ergodic Theory Dynam. Systems 32
  • Cladek, L.; Krause, B. Improved Endpoint Bounds for the Lacunary Spherical Maximal Operator. Preprint, https://arxiv.org/pdf/1703.01508.pdf
  • Cladek, L., Krause, B. Discrete Analogues in Harmonic Analysis: Directional Maximal Functions on $\mathbb {Z}^2$. Preprint, https://arxiv.org/abs/1901.06070. Accepted, IMRN.
  • Cladek, L., Durcik, P., Krause, B., Madrid, J. Directional maximal function along the primes. Publ. Mat. 65 (2021), 841–858.
  • Coifman, R., Rubio de Francia, J., Semmes; S., Multiplicateurs de Fourier de Lp(R) et estimations quadratiques, C. R. Acad. Sci. Paris Ser. I Math. 306 (1988), no. 8, 351-354
  • Coifman,R.; Weiss, G. Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers. Studia Math. 47 (1973), 285–303.
  • Coifman, R., Guido Weiss, G. Review: R. E. Edwards and G.I. Gaudry, Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc. 84 (1978), 242–250.
  • Cook, B., Hughes, K. Bounds for lacunary maximal functions given by Birch-Magyar averages. Trans. Amer. Math. Soc. 374 (2021), no. 6, 3859–3879.
  • Córdoba, A. The Kakeya maximal function and the spherical summation multipliers. Amer. J. Math. 99 (1977), no. 1, 1–22
  • Dasu, S.; Demeter, C.; Langowski, B. Sharp $\ell ^p$-improving estimates for the discrete paraboloid. J. Fourier Anal. Appl. 27 (2021), no. 1, Paper No. 3, 19 pp.
  • Davis, B. On the integrability of the martingale square function. Israel J. Math. 8 1970 187-190.
  • Demeter, C. Pointwise convergence of the ergodic bilinear Hilbert transform. Illinois J. Math. 51 (2007), no. 4, 1123–1158.
  • Demeter, C.; Lacey, M.; Tao, T.; Thiele, C. Breaking the duality in the return times theorem. Duke Math. J. 143 (2008), no. 2, 281–355.
  • Demeter, C.; Tao, T.; Thiele, C. Maximal multilinear operators. Trans. Amer. Math. Soc. 360 (2008), no. 9, 4989–5042.
  • Derrien, J-M. ; Lesigne, E. Un théorème ergodique polynomial ponctuel pour les endomorphismes exacts et les K-systemes. Ann. Inst. H. Poincare Probab. Statist. 32 (1996), no. 6, 765–778.
  • Donoso, S.; Sun, W. Pointwise convergence of some multiple ergodic averages. Adv. Math. 330 (2018), 946–996
  • Donoso, S.; Sun, W. Pointwise multiple averages for systems with two commuting transformations. Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2132–2157.
  • Donoso, S.; Koutsogiannis, A.; Sun, W. Pointwise multiple averages for sublinear functions. Ergodic Theory Dynam. Systems 40 (2020), no. 6, 1594–1618.
  • Dunford, N.; Schwartz, J. Linear operators. Part I. General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley $\&$ Sons, Inc., New York, 1988.
  • Duoandikoetxea, J.; Rubio de Francia, J. Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84 (1986), no. 3, 541–561.
  • Durcik, P.; Guo, S.; Roos, J. A polynomial Roth theorem on the real line. Trans. Amer. Math. Soc. 371 (2019), no. 10, 6973–6993.
  • Erdös, P.; Rado, R. Intersection theorems for systems of sets, Journal of London Mathematical Society 35 (1960), 85–90.
  • Fefferman, C. Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 9–36.
  • Fefferman, C.; Stein, E. Some maximal inequalities. Amer. J. Math., 93:107–115, 1971.
  • Fefferman, C.; Ionescu, A.; Tao, T.; Wainger, S. Analysis and applications: the mathematical work of Elias Stein. With contributions from Loredana Lanzani, Akos Magyar, Mariusz Mirek, et al. Bull. Amer. Math. Soc. (N.S.) 57 (2020), no. 4, 523–594.
  • Freedman, D. On tail probabilities for martingales. Ann. Probability 3 (1975), 100-118.
  • Furstenberg, H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. d’Analyse Math, 71 (1977), 204-256.
  • Furstenberg, H. Proc. Durham Conf., June 1982
  • Furstenberg, H.; Weiss B. A mean ergodic theorem for $\frac {1}{N} \sum _{n \leq N} T^n f \cdot T^{n^2} g$. Convergence in ergodic theory and probability (Columbus, OH, 1993), 193–227, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996.
  • Gaitan, A. Lie, V. The Boundedness of the (Sub)Bilinear Maximal Function along “non-flat” smooth curves. Preprint, https://arxiv.org/abs/1903.11002
  • Gorodnik, A.; Nevo, A. Quantitative ergodic theorems and their number-theoretic applications. Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 1, 65–113.
  • Gowers, B. A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998), no. 3, 529–551.
  • Gowers, B. A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), no. 3, 465–588.
  • Green, B.; Tao, T. An inverse theorem for the Gowers $U^3(G)$ norm. Proc. Edinb. Math. Soc. (2) 51 (2008), no. 1, 73–153.
  • Green, B.; Tao, T. The primes contain arbitrarily long arithmetic progressions. Annals Math. 167 (2008), 481–547
  • Green, B.; Tao, T.; Ziegler, T. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Ann. of Math. (2) 176 (2012), no. 2, 1231–1372.
  • Green, B.; Tao, T. New Bounds for Szemerédi’s Theorem, III: A Polylogarithmic bound for $r_4(N)$. Mathematika 63(3), (2017), 944–1040
  • Guo, S.; Pierce, L.; Roos, J.; Yung, P.-L. Polynomial Carleson operators along monomial curves in the plane. J. Geom. Anal. 27 (2017), no. 4, 2977–3012.
  • Guo, S.; Roos, J.; Yung, P.-L. Sharp Variation-norm Estimates for Oscillatory Integrals Related to Carleson’s Theorem. Anal. PDE 13 (2020), no. 5, 1457–1500.
  • Halmos, P. Lectures in Ergodic Theory. Chelsea Publishing Co., New York, 1956.
  • Han, R; Kovac, V.; Lacey, M.; Madrid, J.; Yang, F. Improving estimates for discrete polynomial averages. J. Fourier Anal. Appl. 26 (2020), no. 3, Paper No. 42, 11 pp.
  • Hanson, D. On the product of the primes. Canad. Math. Bull. 15 (1972), 33–37.
  • Hardy, G.; Littlewood, J. A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), no. 1, 81–116.
  • Host, B.; Kra, B. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161 (2005), no. 1, 397–488.
  • Host, B.; Kra, B. Convergence of polynomial ergodic averages. Probability in mathematics. Israel J. Math. 149 (2005), 1–19.
  • Host, B.; Kra, B. Nilpotent structures in ergodic theory. Mathematical Surveys and Monographs, 236. American Mathematical Society, Providence, RI, 2018.
  • Hua, L.-K. Introduction to number theory. Springer-Verlag, Berlin-New York, 1982. Translated from the Chinese by Peter Shiu.
  • Huang, W.; Shao, S.; Ye, X. Pointwise convergence of multiple ergodic averages and strictly ergodic models. J. Anal. Math. 139 (2019), no. 1, 265–305.
  • Hughes, K. The discrete spherical averages over a family of sparse sequences. J. Anal. Math. 138 (2019), no. 1, 1–21.
  • Hughes, K. $\ell ^p$-improving for discrete spherical averages. Ann. H. Lebesgue 3 (2020), 959–980.
  • Hunt, R. On the convergence of Fourier series. Orthogonal Expansions and Their Continuous Analogues. Proc. Conf., Edwardsville, Ill., 1967. Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255.
  • Hughes, K; Krause, B.; Trojan, B. The maximal function and conditional square function control the variation: an elementary proof. Proc. Amer. Math. Soc. 144 (2016), no. 8, 3583–3588.
  • Ionescu, A. An endpoint estimate for the discrete spherical maximal function. Proc. Amer. Math. Soc. 132 (2004), no. 5, 1411–1417.
  • Ionescu, A.; Wainger, S. $L^p$ boundedness of discrete singular Radon transforms. J. Amer. Math. Soc. 19, (2005), no. 2, 357—383.
  • Jones, R.; Kaufman, R.; Rosenblatt, J.; Wierdl, M. Oscillation in ergodic theory. Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889-935.
  • Jones, R.; Seeger, A.; Wright, J. Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742.
  • Jones, R; Wang, G. Variation inequalities for the Féjer and Poisson kernels. Trans. Amer. Math. Soc., 356 (2004), 4493-4518.
  • Kesler, R.; Lacey, M. Lacunary discrete spherical maximal functions. New York J. Math. 25 (2019), 541–557.
  • Kesler, R.; Lacey, M. $\ell ^p$-Improving and Sparse Inequalities for Discrete Spherical Averages. Anal. Math. 46 (2020), no. 1, 85–95.
  • Kesler, R.; Lacey, M.; Mena Arias, D. Sparse bounds for the discrete spherical maximal functions. Pure Appl. Anal. 2 (2020), no. 1, 75–92.
  • Kloosterman, H. On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$, Acta Math. 49 (1927), no. 3-4, 407–464.
  • Knapp, A.; Stein, E. Intertwining operators for semisimple groups. Ann. of Math (2) 93 (1971), 489-578
  • Krause, B. On Higher-Dimensional Oscillation in Ergodic Theory. Preprint, http://arxiv.org/pdf/1309.2336.pdf
  • Krause, B. Polynomial Ergodic Averages Converge Quickly: Variations on a Theorem of Bourgain. Preprint, http://arxiv.org/pdf/1402.1803.pdf
  • Krause, B. Discrete Analogues in Harmonic Analysis: A Theorem of Stein-Wainger. Preprint available upon request.
  • Krause, B.; Lacey, M. A Discrete Quadratic Carleson Theorem on $\ell ^2$ with a Restricted Supremum. Int. Math. Res. Not. IMRN 2017, no. 10, 3180–3208.
  • Krause, B.; Mirek, M.; Tao, T. Pointwise ergodic theorems for non-conventional bilinear polynomial averages. Preprint, https://arxiv.org/pdf/2008.00857.pdf. Accepted, the Annals of Mathematics.
  • Krause, B.; Roos, J. Discrete analogues of maximally modulated singular integrals of Stein-Wainger type. To appear, Journal of the EMS
  • Krause, B.; Roos, J. Discrete analogues of maximally modulated singular integrals of Stein-Wainger type,II. Preprint, https://arxiv.org/pdf/2107.14616.pdf
  • Krause, B.; Zorin-Kranich, P. Weighted and vector-valued variational estimates for ergodic averages. Ergodic Theory Dynam. Systems 38 (2018), no. 1, 244–256
  • Lacey, M. On an inequality due to Bourgain. Illinois J. Math. 41 (1997), no. 2, 231–236.
  • Lacey, M. The bilinear maximal functions map into $L^p$ for $2/3<p\leq 1$. Ann. of Math. (2) 151 (2000), no. 1, 35–57.
  • LaVictoire, P. An $L^1$ ergodic theorem for sparse random subsequences. Math. Res. Lett. 16 (2009), no. 5, 849–859.
  • LaVictoire, P. Universally $L^1$-bad arithmetic sequences. J. Anal. Math. 113 (2011), 241–263.
  • Lee, S.; Rogers, K.; Seeger, A. Improved bounds for Stein’s square functions. Proc. London Math. Soc. (3), 104(6):1198–1234, 2012.
  • Lépingle, D. La variation d’ordre $p$ des semi-martingales. Z.F.W. 36, 1976, 295-316.
  • Lesigne, E. Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales. Bull. Soc. Math. France 121 (1993), no. 3, 315–351.
  • Lesigne, E.; Rittaud, B.; de la Rue, T. Weak disjointness of measure preserving dynamical systems. Ergodic Theory Dynam. Systems 23 (2003), 1173–1198.
  • Lewko, A.; Lewko, M. Estimates for the square variation of partial sums of Fourier series and their rearrangements. J. Funct. Anal. 262 (2012), no. 6, 2561–2607.
  • Leibman, A. Convergence of multiple ergodic averages along polynomials of several variables. Israel J. Math. 146 (2005), 303–315.
  • Leibman, A. Pointwise convergence of ergodic averages for polynomial sequences of rotations of a nilmanifold. Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213.
  • Li, X.; Xiao, L. Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials. Ameri. J. of Math, 138 (2016), No. 4, 907-962
  • Li, X., Xiao, L. Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials, Amer. J. Math. 138 (2016), no. 4, 907–962.
  • Lie, V. The (weak-L2) boundedness of the quadratic Carleson operator. Geom. Funct. Anal. 19 (2009), no. 2, 457–497.
  • Lie, V. The polynomial Carleson operator, Ann. Math. (2) (ISSN 0003-486X) 192 (1) (2020) 47–163.
  • Littman, Q. $L^p \to L^q$-estimates for singular integral operators arising from hyperbolic equations. (1973), 479–481.
  • Lyall, N.; Magyar, A. Distances and Trees in Dense Subsets of $\mathbb {Z}^d$. Israel J. Math. 240 (2020), no. 2, 769–790.
  • Lyall, N.; Magyar, A. Optimal polynomial recurrence. Canad. J. Math. 65 (2013), no. 1, 171–194.
  • Magyar, A. $L^p$-bounds for spherical maximal operators on $\mathbb {Z}^n$. Rev. Mat. Iberoamericana 13 (1997), no. 2, 307–317.
  • Magyar, A. On the distribution of lattice points on spheres and level surfaces of polynomials. J. Number Theory 122 (2007), no. 1, 69–83.
  • Magyar, A.; Stein, E.; Wainger, S. Discrete analogues in harmonic analysis: spherical averages. Ann. of Math. (2) 155 (2002), no. 1, 189–208.
  • Mirek, M. $\ell ^p(\Bbb {Z})$-boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems. Math. Z. 279 (2015), no. 1-2, 27–59.
  • Mirek, M. Square function estimates for discrete Radon transforms. Anal. PDE 11 (2018), no. 3, 583–608.
  • Mirek, M.; Stein, E.; Trojan, B. $\ell ^p(\mathbb {Z}^d)$-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates. J. Funct. Anal. 277 (2019), no. 8, 2471–2521.
  • Mirek, M.; Stein, E.; Trojan, B. $\ell ^p(\mathbb {Z}^d)$-estimates for discrete operators of Radon type: Variational estimates. Invent. Math. 209 (2017), no. 3, 665–748.
  • Mirek, M; Stein, E.; Zorin-Kranich, P. Jump inequalities via real interpolation. Math. Ann. 376 (2020), no. 1-2, pp. 797–819.
  • Mirek, M; Stein, E.; Zorin-Kranich, P. A bootstrapping approach to jump inequalities and their applications. Anal. PDE 13 (2020), no. 2, pp. 527–558.
  • Mirek, M; Stein, E.; Zorin-Kranich, P. Jump Inequalities for Translation-Invariant Operators of Radon Type on $\mathbb {Z}^d$. Adv. Math. 365 (2020), 107065
  • Mirek, M.; Stein, E.; Zorin-Kranich, P. Jump inequalities via real interpolation. Math. Ann. 376, 797–819 (2020).
  • Mirek, M.; Trojan, B. Discrete maximal functions in higher dimensions and applications to ergodic theory. Amer. J. Math. 138 (2016), no. 6, 1495–1532.
  • Montgomery, H. Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conference Series in Mathematics, 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. xiv+220 pp.
  • Nazarov, F.; Oberlin, R.; Thiele, C. A Calderón-Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain. Math. Res. Lett. 17 (2010), no. 3, 529–545.
  • Oberlin, D. Two discrete fractional integrals. Math. Res. Lett. 8 (2001), 1–6.
  • Peluse, S. Bounds for sets with no polynomial progressions. Forum of Mathematics, Pi, 8, E16 (2020)
  • Peluse, S.; Prendiville, S. A Polylogarithmic Bound in the Nonlinear Roth Theorem. Preprint, https://arxiv.org/pdf/2003.04122.pdf
  • Pierce, L. Discrete fractional Radon transforms and quadratic forms. Duke Math. J. 161 (2012), no. 1, 69–106.
  • Pierce, L. Correction to ”Discrete fractional Radon transforms and quadratic forms,” Duke Math. J. 161 (2012), 69–106. Duke Math. J. 162 (2013), no. 6, 1203–1204.
  • Pierce, L. On superorthogonality. Preprint, https://arxiv.org/pdf/2007.10249.pdf
  • Pierce, L.; Yung, P.-L. A polynomial Carleson operator along the paraboloid. Rev. Mat. Iberoam. 35 (2019), no. 2, 339–422.
  • Pisier, G.; Xu, Q. The strong $p$-variation of martingales and orthogonal series. Prob. Theory, 77 (1988), 497-541.
  • Qian, J. The $p$-variation of partial sum processes and the empirical process. Ann. of Prob. Theory, 77 (1988), 1370-1383.
  • Ramos, J. The Hilbert transform along the parabola, the polynomial Carleson theorem and oscillatory singular integrals. Math. Ann. 379 (2021), no. 1-2, 159–185.
  • Ramos, J. Uniform bounds for oscillatory and polynomial Carleson operators. J. Fourier Anal. Appl. 27 (2021), no. 1, Paper No. 5, 14 pp.
  • Rao, A. Coding for Sunflowers, Discrete Analysis, 2020:2, 8 pp.
  • Ricci, F.; Stein, E. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J. Funct. Anal. 86 (1989), no. 2, 360–389.
  • Rosenblatt, J.; Wierdl, M. Pointwise ergodic theorems via harmonic analysis. Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, (1995), 3–151.
  • Roth, K. On certain sets of integers. J. London Math. Soc. 28 (1953), 104–109.
  • Rubio de Francia, J. A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat. Iberoamericana 1 (1985), 1–14.
  • Sarközy, A. On difference sets of sequences of integers III. Acta Math. Acad. Sci. Hungar., 31 (1978), 355-386.
  • Schlag, W. A generalization of Bourgain’s circular maximal theorem. J. Amer. Math. Soc. 10 (1997), no. 1, 103–122
  • Seeger, A.; Tao, T.; Wright, J. Pointwise convergence of lacunary spherical means. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 341–351, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003
  • Stein, E. Maximal functions; Spherical means. Proc. Nat. Acad. Sci. U.S.A. 73, (1976), 2174–2175.
  • Stein, E. Oscillatory integrals related to Radon-like transforms. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. 1995, Special Issue, 535–551.
  • Stein, E. Personal Communication.
  • Stein, E. On Limits of Sequences of Operators. Annals of Mathematics, Second Series, Vol. 74, No. 1 (Jul., 1961), pp. 140-170
  • Stein, E. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.
  • Stein, E.; Shakarchi, R. Functional analysis. Introduction to further topics in analysis. Princeton Lectures in Analysis, 4. Princeton University Press, Princeton, NJ, 2011. xviii+423 pp.
  • Stein, E.; Wainger, S. Discrete analogues of singular Radon transforms. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 537–544.
  • Stein, E.; Wainger, S. Discrete analogues in harmonic analysis. I. $\ell ^2$ estimates for singular Radon transforms. Amer. J. Math. 121 (1999), no. 6, 1291–1336.
  • Stein, E.; Wainger, S. Discrete analogues in harmonic analysis II: Fractional integration. J. Anal. Math. 80, 335–355 (2000).
  • Stein, E.; Wainger, S. Oscillatory integrals related to Carleson’s theorem. Math. Res. Lett., 8(5-6):789–800, 2001.
  • Stein, E.; Wainger, S. Two discrete fractional integral operators revisited. J. Anal. Math. 87, 451–479 (2002).
  • Stein, E; Weiss, G. Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971
  • Strichartz, R. Convolutions with kernels having singularities on a sphere. Trans. Amer. Math. Soc. 148 (1970), 461–471
  • Szemerédi, E. On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 (1975), 299–345.
  • Tao, T. Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory Dynam. Systems 28 (2008), no. 2, 657–688.
  • Tao, T. An epsilon of room, Vol I.. Graduate Studies in Mathematics, 117, American Mathematical Society, 2010.
  • Tao, T. Topics in random matrix theory. Graduate Studies in Mathematics, 132. American Mathematical Society, Providence, RI, 2012.
  • Tao, T. Higher order Fourier analysis. Graduate Studies in Mathematics, 142. American Mathematical Society, Providence, RI, 2012.
  • Tao, T. Equidistribution for Multidimensional Polynomial Phases. https://terrytao.wordpress.com/2015/08/06/equidistribution-for-multidimensional-polynomial-phases/
  • Tao, T. The Ionescu-Wainger Multiplier Theorem and the Adeles. Preprint, https://arxiv.org/pdf/2008.05066.pdf
  • Tao, T.; Vu, V. Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006.
  • Tao, T.; Wright, J. $L^p$ improving bounds for averages along curves, J. Amer. Math. Soc. 16 (2003), no. 3, 605–638
  • Neumann, J. Proof of the Quasi-ergodic Hypothesis, Proc. Natl. Acad. Sci. USA, 18 (1): 70–82
  • Walsh, M. Norm convergence of nilpotent ergodic averages. Annals of Mathematics 175 (2012), no. 3, 1667–1688.
  • Weil, A. On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204–207.
  • Wilson, M. Weighted Littlewood-Paley theory and exponential-square integrability. Lecture Notes in Mathematics, 1924. Springer, Berlin, 2008.
  • Wolff, T. Lectures on harmonic analysis. With a foreword by Charles Fefferman and a preface by Izabella Laba. Edited by Laba and Carol Shubin. University Lecture Series, 29. American Mathematical Society, Providence, RI, 2003. x+137 pp.
  • Wooley, T. Vinogradov’s mean value theorem via efficient congruencing. Ann. of Math. 2 (2012), no. 175, 1575–1
  • Zorin-Kranich, P. Variation estimates for averages along primes and polynomials Trans. Amer. Math. Soc. 369 (2017), no. 8, 5403–5423.
  • Zorin-Kranich, P. Maximal polynomial modulations of singular integrals. Adv. Math. 386 (2021), Paper No. 107832, 40 pp.