Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models
About this Title
Pierre Magal, UMR CNRS 5251 IMB & INRIA, Sud-Ouest Anubis, Université of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France and Shigui Ruan, Department of Mathematics, University of Miami, Coral Gables, Florida 33124-4250
Publication: Memoirs of the American Mathematical Society
Publication Year:
2009; Volume 202, Number 951
ISBNs: 978-0-8218-4653-7 (print); 978-1-4704-0565-6 (online)
DOI: http://dx.doi.org/10.1090/S0065-9266-09-00568-7
Published electronically: July 22, 2009
MathSciNet review: 2559965
Keywords:Center manifold, semilinear Cauchy problem, non-dense domain, Hopf
bifurcation, age structure model
MSC: Primary 37L10; Secondary 35K90, 35R20, 37L50, 92D25
Table of Contents
Chapters
- Chapter 1. Introduction
- Chapter 2. Integrated semigroups
- Chapter 3. Spectral decomposition of the state space
- Chapter 4. Center manifold theory
- Chapter 5. Hopf bifurcation in age structured models
Abstract
Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, we study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, we use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
- 1. R. M. Anderson, Discussion: The Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol. 53 (1991), 3-32.
- 2. V. Andreasen, Instability in an SIR-model with age-dependent susceptibility, in ``Mathematical Population Dynamics'', Vol. 1, eds. by O. Arino, D. Axelrod, M. Kimmel and M. Langlais, Wuerz Publishing, Winnipeg, 1995, pp. 3-14.
- 3. Wolfgang Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), no. 2, 321–349. MR 872810, 10.1112/plms/s3-54.2.321
- 4. Wolfgang Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327–352. MR 920499, 10.1007/BF02774144
- 5. Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588
- 6. A. Avez, Calcul différentiel, Collection Maîtrise de Mathématiques Pures. [Collection of Pure Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). MR 700398
- 7. J. M. Ball, Saddle point analysis for an ordinary differential equation in a Banach space and an application to dynamic buckling of a beam, in ``Nonlinear Elasticity'', ed. by R. W. Dickey, Academic Press, New York, 1973, pp. 93-160.
- 8. Peter W. Bates and Christopher K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 1–38. MR 1000974
- 9. Peter W. Bates, Kening Lu, and Chongchun Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Amer. Math. Soc. 135 (1998), no. 645, viii+129. MR 1445489, 10.1090/memo/0645
- 10. Stefano Bertoni, Periodic solutions for non-linear equations of structured populations, J. Math. Anal. Appl. 220 (1998), no. 1, 250–267. MR 1613952, 10.1006/jmaa.1997.5878
- 11. Felix E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1960/1961), 22–130. MR 0209909
- 12. Jack Carr, Applications of centre manifold theory, Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York-Berlin, 1981. MR 635782
- 13. C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin, and Wei M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Biol. 27 (1989), no. 3, 233–258. MR 1000090, 10.1007/BF00275810
- 14. Youngjoon Cha, Mimmo Iannelli, and Fabio A. Milner, Stability change of an epidemic model, Dynam. Systems Appl. 9 (2000), no. 3, 361–376. MR 1844637
- 15. C. Chicone and Y. Latushkin, Center manifolds for infinite-dimensional nonautonomous differential equations, J. Differential Equations 141 (1997), no. 2, 356–399. MR 1488358, 10.1006/jdeq.1997.3343
- 16. Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
- 17. Shui-Nee Chow, Cheng Zhi Li, and Duo Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994. MR 1290117
- 18. Shui-Nee Chow, Xiao-Biao Lin, and Kening Lu, Smooth invariant foliations in infinite-dimensional spaces, J. Differential Equations 94 (1991), no. 2, 266–291. MR 1137616, 10.1016/0022-0396(91)90093-O
- 19. Shui-Nee Chow, Weishi Liu, and Yingfei Yi, Center manifolds for smooth invariant manifolds, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5179–5211. MR 1650077, 10.1090/S0002-9947-00-02443-0
- 20. Shui-Nee Chow, Weishi Liu, and Yingfei Yi, Center manifolds for invariant sets, J. Differential Equations 168 (2000), no. 2, 355–385. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). MR 1808454, 10.1006/jdeq.2000.3890
- 21. Shui-Nee Chow and Kening Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations 74 (1988), no. 2, 285–317. MR 952900, 10.1016/0022-0396(88)90007-1
- 22. Shui-Nee Chow and Kening Lu, $C^k$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 303–320. MR 943805, 10.1017/S0308210500014682
- 23. Shui-Nee Chow and Kening Lu, Invariant manifolds and foliations for quasiperiodic systems, J. Differential Equations 117 (1995), no. 1, 1–27. MR 1320181, 10.1006/jdeq.1995.1046
- 24. Shui-Nee Chow and Yingfei Yi, Center manifold and stability for skew-product flows, J. Dynam. Differential Equations 6 (1994), no. 4, 543–582. MR 1303274, 10.1007/BF02218847
- 25. J. M. Cushing, Model stability and instability in age structured populations, J. Theoret. Biol. 86 (1980), no. 4, 709–730. MR 596373, 10.1016/0022-5193(80)90307-0
- 26. J. M. Cushing, Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics, Comput. Math. Appl. 9 (1983), no. 3, 459–478. Hyperbolic partial differential equations. MR 702665, 10.1016/0898-1221(83)90060-3
- 27. J. M. Cushing, An introduction to structured population dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. MR 1636703
- 28. E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, J. Theoretical Biology 249 (2007), 487-499.
- 29. Erika M. C. D’Agata, Pierre Magal, Shigui Ruan, and Glenn Webb, Asymptotic behavior in nosocomial epidemic models with antibiotic resistance, Differential Integral Equations 19 (2006), no. 5, 573–600. MR 2235142
- 30. G. Da Prato and A. Lunardi, Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space, Arch. Rational Mech. Anal. 101 (1988), no. 2, 115–141. MR 921935, 10.1007/BF00251457
- 31. G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285–344 (1988). MR 939631
- 32. O. Diekmann, H. Heesterbeek and H. Metz, The legacy of Kermack and McKendrick, in ``Epidemic Models: Their Strcture and Relation to Data'', ed. by. D. Mollison, Cambridge University Press, Cambridge, 1995, pp. 95-115.
- 33. Odo Diekmann, Philipp Getto, and Mats Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1023–1069. MR 2368893, 10.1137/060659211
- 34. O. Diekmann and S. A. van Gils, Invariant manifolds for Volterra integral equations of convolution type, J. Differential Equations 54 (1984), no. 2, 139–180. MR 757290, 10.1016/0022-0396(84)90156-6
- 35. Odo Diekmann and Stephan A. van Gils, The center manifold for delay equations in the light of suns and stars, Singularity theory and its applications, Part II (Coventry, 1988/1989), Lecture Notes in Math., vol. 1463, Springer, Berlin, 1991, pp. 122–141. MR 1129051, 10.1007/BFb0085429
- 36. Odo Diekmann, Stephan A. van Gils, Sjoerd M. Verduyn Lunel, and Hans-Otto Walther, Delay equations, Applied Mathematical Sciences, vol. 110, Springer-Verlag, New York, 1995. Functional, complex, and nonlinear analysis. MR 1345150
- 37. P. Dolbeault, Analyse complexe, Collection Maîtrise de Mathématiques Pures. [Collection of Pure Mathematics for the Master’s Degree], Masson, Paris, 1990 (French). MR 1059456
- 38. A. Ducrot, Z. Liu, and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl. 341 (2008), no. 1, 501–518. MR 2394101, 10.1016/j.jmaa.2007.09.074
- 39. A. Ducrot, Z. Liu and P. Magal, Projectors on the generalized eigenspaces for neutral functional differential equations in $L^p$ spaces, Can. J. Math. (to appear).
- 40. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- 41. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- 42. K. Ezzinbi and M. Adimy, The basic theory of abstract semilinear functional differential equations with nondense domain, Delay differential equations and applications, NATO Sci. Ser. II Math. Phys. Chem., vol. 205, Springer, Dordrecht, 2006, pp. 347–407. MR 2337821, 10.1007/1-4020-3647-7_9
- 43. Teresa Faria, Wenzhang Huang, and Jianhong Wu, Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces, SIAM J. Math. Anal. 34 (2002), no. 1, 173–203. MR 1950831, 10.1137/S0036141001384971
- 44. Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, 10.1016/0022-0396(79)90152-9
- 45. Th. Gallay, A center-stable manifold theorem for differential equations in Banach spaces, Comm. Math. Phys. 152 (1993), no. 2, 249–268. MR 1210168
- 46. Morton E. Gurtin and Richard C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal. 54 (1974), 281–300. MR 0354068
- 47. J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901), 224-228.
- 48. Jack K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496–531. MR 0123786
- 49. Jack K. Hale, Ordinary differential equations, 2nd ed., Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. MR 587488
- 50. Jack K. Hale, Flows on centre manifolds for scalar functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 3-4, 193–201. MR 824220, 10.1017/S030821050002076X
- 51. Jack K. Hale and Sjoerd M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR 1243878
- 52. Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge-New York, 1981. MR 603442
- 53. K. P. Hadeler and K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations, Comput. Math. Appl. 9 (1983), no. 3, 415–430. Hyperbolic partial differential equations. MR 702661, 10.1016/0898-1221(83)90056-1
- 54. Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- 55. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
- 56. Ale Jan Homburg, Global aspects of homoclinic bifurcations of vector fields, Mem. Amer. Math. Soc. 121 (1996), no. 578, viii+128. MR 1327210, 10.1090/memo/0578
- 57. Frank Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics. MR 0526771
- 58. H. J. Hupkes and S. M. Verduyn Lunel, Center manifold theory for functional differential equations of mixed type, J. Dynam. Differential Equations 19 (2007), no. 2, 497–560. MR 2333418, 10.1007/s10884-006-9055-9
- 59. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Giadini Editori e Stampatori, Pisa, 1994.
- 60. Hisashi Inaba, Mathematical analysis for an evolutionary epidemic model, Mathematical models in medical and health science (Nashville, TN, 1997), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 1998, pp. 213–236. MR 1741583
- 61. Hisashi Inaba, Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases, Japan J. Indust. Appl. Math. 18 (2001), no. 2, 273–292. Recent topics in mathematics moving toward science and engineering. MR 1842912, 10.1007/BF03168575
- 62. Hisashi Inaba, Endemic threshold and stability in an evolutionary epidemic model, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (Minneapolis, MN, 1999) IMA Vol. Math. Appl., vol. 126, Springer, New York, 2002, pp. 337–359. MR 1938912, 10.1007/978-1-4613-0065-6_19
- 63. Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- 64. Hermann Kellerman and Matthias Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), no. 1, 160–180. MR 999494, 10.1016/0022-1236(89)90116-X
- 65. Al Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546–570. MR 0221044
- 66. B. L. Keyfitz and N. Keyfitz, The McKendrick partial differential equation and its uses in epidemiology and population study, Math. Comput. Modelling 26 (1997), no. 6, 1–9. Recent advances in mathematical and computational studies in demography. MR 1601714, 10.1016/S0895-7177(97)00165-9
- 67. T. Kostava and J. Li, Oscillations and stability due to juvenile competitive effects on adult fertility, Comput. Math. Appl. 32 (1996), No. 11, 57-70.
- 68. Tibor Krisztin, Invariance and noninvariance of center manifolds of time-$t$ maps with respect to the semiflow, SIAM J. Math. Anal. 36 (2004/05), no. 3, 717–739 (electronic). MR 2111913, 10.1137/S0036141003419170
- 69. N. Krylov and N. N. Bogoliubov, The Application of Methods of Nonlinear Mechanics to the Theory of Stationary Oscillations, Pub. 8 Ukrainian Acad. Sci., Kiev, 1934.
- 70. Serge Lang, Real analysis, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR 783635
- 71. A. Liapounoff, Problème Général de la Stabilité du Mouvement, Annals of Mathematics Studies, no. 17, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1947 (French). MR 0021186
- 72. Xiao-Biao Lin, Homoclinic bifurcations with weakly expanding center manifolds, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 5, Springer, Berlin, 1996, pp. 99–189. MR 1393487
- 73. Xiao Dong Lin, Joseph W.-H. So, and Jian Hong Wu, Centre manifolds for partial differential equations with delays, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 237–254. MR 1200199, 10.1017/S0308210500021090
- 74. Zhihua Liu, Pierre Magal, and Shigui Ruan, Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups, J. Differential Equations 244 (2008), no. 7, 1784–1809. MR 2404439, 10.1016/j.jde.2008.01.007
- 75. Pierre Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations (2001), No. 65, 35 pp. (electronic). MR 1863784
- 76. Pierre Magal and Shigui Ruan, On integrated semigroups and age structured models in $L^p$ spaces, Differential Integral Equations 20 (2007), no. 2, 197–239. MR 2294465
- 77. Pierre Magal and Shigui Ruan (eds.), Structured population models in biology and epidemiology, Lecture Notes in Mathematics, vol. 1936, Springer-Verlag, Berlin, 2008. Mathematical Biosciences Subseries. MR 2445337
- 78. P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Diff. Equations (in press).
- 79. P. Magal and S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza A drift (submitted).
- 80. P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models, Commun. Pure Appl. Anal. 3 (2004), no. 4, 695–727. MR 2106296, 10.3934/cpaa.2004.3.695
- 81. Alexander Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations 65 (1986), no. 1, 68–88. MR 859473, 10.1016/0022-0396(86)90042-2
- 82. Alexander Mielke, Normal hyperbolicity of center manifolds and Saint-Venant’s principle, Arch. Rational Mech. Anal. 110 (1990), no. 4, 353–372. MR 1049211, 10.1007/BF00393272
- 83. Nguyen Van Minh and Jianhong Wu, Invariant manifolds of partial functional differential equations, J. Differential Equations 198 (2004), no. 2, 381–421. MR 2039148, 10.1016/j.jde.2003.10.006
- 84. Frank Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), no. 1, 111–155. MR 965688
- 85. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
- 86. C. M. Pease, An evolutionary epidemiological mechanism with application to type A influenza, Theoret. Pop. Biol. 31 (1987), 422-452.
- 87. Oskar Perron, Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z. 29 (1929), no. 1, 129–160 (German). MR 1544998, 10.1007/BF01180524
- 88. V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297–1324 (Russian). MR 0190449
- 89. Jan Prüss, On the qualitative behaviour of populations with age-specific interactions, Comput. Math. Appl. 9 (1983), no. 3, 327–339. Hyperbolic partial differential equations. MR 702651, 10.1016/0898-1221(83)90020-2
- 90. Björn Sandstede, Center manifolds for homoclinic solutions, J. Dynam. Differential Equations 12 (2000), no. 3, 449–510. MR 1800130, 10.1023/A:1026412926537
- 91. Bruno Scarpellini, Center manifolds of infinite dimensions. I. Main results and applications, Z. Angew. Math. Phys. 42 (1991), no. 1, 1–32. MR 1102229, 10.1007/BF00962056
- 92. Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
- 93. Arnd Scheel, Radially symmetric patterns of reaction-diffusion systems, Mem. Amer. Math. Soc. 165 (2003), no. 786, viii+86. MR 1997690, 10.1090/memo/0786
- 94. George R. Sell and Yuncheng You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002. MR 1873467
- 95. Jan Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), no. 2, 431–469. MR 783998, 10.1090/S0002-9947-1985-0783998-8
- 96. J. H. Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models, Comput. Math. Appl. 15 (1988), no. 6-8, 555–564. Hyperbolic partial differential equations. V. MR 953565, 10.1016/0898-1221(88)90280-5
- 97. Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
- 98. Horst R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), no. 6, 1035–1066. MR 1073056
- 99. Horst R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), no. 2, 416–447. MR 1077937, 10.1016/0022-247X(90)90074-P
- 100. Horst R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of $S\to I\to R$ type infectious diseases, Differential equations models in biology, epidemiology and ecology (Claremont, CA, 1990) Lecture Notes in Biomath., vol. 92, Springer, Berlin, 1991, pp. 139–158. MR 1193478, 10.1007/978-3-642-45692-3_10
- 101. Horst R. Thieme, Quasi-compact semigroups via bounded perturbation, Advances in mathematical population dynamics—molecules, cells and man (Houston, TX, 1995) Ser. Math. Biol. Med., vol. 6, World Sci. Publ., River Edge, NJ, 1997, pp. 691–711. MR 1634223
- 102. Horst R. Thieme, Positive perturbation of operator semigroups: growth bounds, essential compactness, and asynchronous exponential growth, Discrete Contin. Dynam. Systems 4 (1998), no. 4, 735–764. MR 1641201, 10.3934/dcds.1998.4.735
- 103. A. Vanderbauwhede, Invariant manifolds in infinite dimensions, Dynamics of infinite-dimensional systems (Lisbon, 1986) NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 409–420. MR 921925
- 104. A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 89–169. MR 1000977
- 105. A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal. 72 (1987), no. 2, 209–224. MR 886811, 10.1016/0022-1236(87)90086-3
- 106. A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics reported: expositions in dynamical systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992, pp. 125–163. MR 1153030
- 107. G. F. Webb, An age-dependent epidemic model with spatial diffusion, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 91–102. MR 592106, 10.1007/BF00284623
- 108. G. F. Webb, Theory of nonlinear age-dependent population dynamics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 89, Marcel Dekker, Inc., New York, 1985. MR 772205
- 109. G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic resistant bacterial epidemics in hospitals, Proc. Natl. Acad. Sci. USA 102 (2005), 13343-13348.
- 110. Stephen Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, Applied Mathematical Sciences, vol. 105, Springer-Verlag, New York, 1994. With the assistance of György Haller and Igor Mezić. MR 1278264
- 111. Jianhong Wu, Theory and applications of partial functional-differential equations, Applied Mathematical Sciences, vol. 119, Springer-Verlag, New York, 1996. MR 1415838
- 112. Yingfei Yi, A generalized integral manifold theorem, J. Differential Equations 102 (1993), no. 1, 153–187. MR 1209981, 10.1006/jdeq.1993.1026
- 113. Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
- 114. Pei Zhang, Zhilan Feng, and Fabio Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Math. Biosci. 205 (2007), no. 1, 83–107. MR 2290375, 10.1016/j.mbs.2006.06.006