Imprimitive irreducible modules for finite quasisimple groups
About this Title
Gerhard Hiss, William J. Husen and Kay Magaard
Publication: Memoirs of the American Mathematical Society
Publication Year:
2015; Volume 234, Number 1104
ISBNs: 978-1-4704-0960-9 (print); 978-1-4704-2031-4 (online)
DOI: http://dx.doi.org/10.1090/memo/1104
Published electronically: August 1, 2014
Keywords:Finite quasisimple group, maximal subgroup, finite classical group,
$\mathcal {C}_2$-subgroup
Table of Contents
Chapters
- Acknowledgements
- Chapter 1. Introduction
- Chapter 2. Generalities
- Chapter 3. Sporadic Groups and the Tits Group
- Chapter 4. Alternating Groups
- Chapter 5. Exceptional Schur Multipliers and Exceptional Isomorphisms
- Chapter 6. Groups of Lie type: Induction from non-parabolic subgroups
- Chapter 7. Groups of Lie type: Induction from parabolic subgroups
- Chapter 8. Groups of Lie type: char$(K) = 0$
- Chapter 9. Classical groups: $\text {char}(K) = 0$
- Chapter 10. Exceptional groups
Abstract
Motivated by the maximal subgroup problem of the finite classical groups we begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields . A module of a group over is imprimitive, if it is induced from a module of a proper subgroup of . We obtain our strongest results when char, although much of our analysis carries over into positive characteristic. If is a finite quasisimple group of Lie type, we prove that an imprimitive irreducible -module is Harish-Chandra induced. This being true for char different from the defining characteristic of , we specialize to the case char and apply Harish-Chandra philosophy to classify irreducible Harish-Chandra induced modules in terms of Harish-Chandra series, as well as in terms of Lusztig series. We determine the asymptotic proportion of the irreducible imprimitive -modules, when runs through a series groups of fixed (twisted) Lie type. One of the surprising outcomes of our investigations is the fact that these proportions tend to , if the Lie rank of the groups tends to infinity. For exceptional groups of Lie type of small rank, and for sporadic groups , we determine all irreducible imprimitive -modules for arbitrary characteristic of .
- [1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469â514. MR 746539, 10.1007/BF01388470
- [2] Michael Aschbacher, Chevalley groups of type $G_2$ as the group of a trilinear form, J. Algebra 109 (1987), no. 1, 193â259. MR 898346, 10.1016/0021-8693(87)90173-6
- [3] Michael Aschbacher, The $27$-dimensional module for $E_6$. I, Invent. Math. 89 (1987), no. 1, 159â195. MR 892190, 10.1007/BF01404676
- [4] Michael Aschbacher, The $27$-dimensional module for $E_6$. III, Trans. Amer. Math. Soc. 321 (1990), no. 1, 45â84. MR 986684, 10.1090/S0002-9947-1990-0986684-6
- [5] Michael Aschbacher, 3-transposition groups, Cambridge Tracts in Mathematics, vol. 124, Cambridge University Press, Cambridge, 1997. MR 1423599
- [6] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger, and Ăkos Seress, Permutations with restricted cycle structure and an algorithmic application, Combin. Probab. Comput. 11 (2002), no. 5, 447â464. MR 1930351, 10.1017/S0963548302005217
- [7] C. Bessenrodt and A. Kleshchev, On Kronecker products of complex representations of the symmetric and alternating groups, Pacific J. Math. 190 (1999), no. 2, 201â223. MR 1722888, 10.2140/pjm.1999.190.201
- [8] Christine Bessenrodt and Alexander S. Kleshchev, On tensor products of modular representations of symmetric groups, Bull. London Math. Soc. 32 (2000), no. 3, 292â296. MR 1750169, 10.1112/S0024609300007098
- [9] Christine Bessenrodt and Alexander S. Kleshchev, Irreducible tensor products over alternating groups, J. Algebra 228 (2000), no. 2, 536â550. MR 1764578, 10.1006/jabr.2000.8284
- [10] Cédric Bonnafé, Sur les caractÚres des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque 306 (2006), vi+165 (French, with English and French summaries). MR 2274998
- [11] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
- [12] N. Bourbaki. AlgĂšbres, Chapitre IX. Hermann, Paris, 1958.
- [13] Nicolas Bourbaki, ĂlĂ©ments de mathĂ©matique, Masson, Paris, 1981 (French). Groupes et algĂšbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- [14] John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, vol. 407, Cambridge University Press, Cambridge, 2013. With a foreword by Martin Liebeck. MR 3098485
- [15] T. Breuer et al. The Modular Atlas homepage. http://www.math.rwth-aachen.de/ËMOC/.
- [16] Michel BrouĂ©, IsomĂ©tries de caractĂšres et Ă©quivalences de Morita ou dĂ©rivĂ©es, Inst. Hautes Ătudes Sci. Publ. Math. 71 (1990), 45â63 (French). MR 1079643
- [17] Michel BrouĂ© and Gunter Malle, ThĂ©orĂšmes de Sylow gĂ©nĂ©riques pour les groupes rĂ©ductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241â262 (French). MR 1149033, 10.1007/BF01444619
- [18] Michel BrouĂ©, Gunter Malle, and Jean Michel, Generic blocks of finite reductive groups, AstĂ©risque 212 (1993), 7â92. ReprĂ©sentations unipotentes gĂ©nĂ©riques et blocs des groupes rĂ©ductifs finis. MR 1235832
- [19] Michel BrouĂ© and Jean Michel, Blocs et sĂ©ries de Lusztig dans un groupe rĂ©ductif fini, J. Reine Angew. Math. 395 (1989), 56â67 (French). MR 983059, 10.1515/crll.1989.395.56
- [20] R. Burkhardt, Die Zerlegungsmatrizen der Gruppen ${\rm PSL}(2,p^{f})$, J. Algebra 40 (1976), no. 1, 75â96 (German). MR 0480710
- [21] R. Burkhardt, Ăber die Zerlegungszahlen der Suzukigruppen ${\rm Sz}(q)$, J. Algebra 59 (1979), no. 2, 421â433 (German). MR 543261, 10.1016/0021-8693(79)90138-8
- [22] Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756
- [23] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- [24] Bomshik Chang and Rimhak Ree, The characters of $G_{2}(q)$, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome,1972), Academic Press, London, 1974, pp. 395â413. MR 0364419
- [25] Arjeh M. Cohen and Bruce N. Cooperstein, The $2$-spaces of the standard $E_6(q)$-module, Geom. Dedicata 25 (1988), no. 1-3, 467â480. Geometries and groups (Noordwijkerhout, 1986). MR 925847, 10.1007/BF00191937
- [26] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- [27] Bruce N. Cooperstein, Maximal subgroups of $G_{2}(2^{n})$, J. Algebra 70 (1981), no. 1, 23â36. MR 618376, 10.1016/0021-8693(81)90241-6
- [28] C. W. Curtis and I. Reiner. Methods of Representation Theory I, Wiley, 1981; II, Wiley, 1987.
- [29] S. Dany. Berechnung von Charaktertafeln zentraler Erweiterungen ausgewÀhlter Gruppen. Diplomarbeit, RWTH Aachen University, 2006.
- [30] D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups $^3D_4(q)$, Trans. Amer. Math. Soc. 303 (1987), no. 1, 39â70. MR 896007, 10.1090/S0002-9947-1987-0896007-9
- [31] François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841
- [32] Richard Dipper and Jie Du, Harish-Chandra vertices, J. Reine Angew. Math. 437 (1993), 101â130. MR 1212254, 10.1515/crll.1993.437.101
- [33] Richard Dipper and Peter Fleischmann, Modular Harish-Chandra theory. I, Math. Z. 211 (1992), no. 1, 49â71. MR 1179779, 10.1007/BF02571417
- [34] Dragomir Ćœ. DjokoviÄ and Jerry Malzan, Imprimitive irreducible complex characters of the symmetric group, Math. Z. 138 (1974), 219â224. MR 0352234
- [35] Dragomiz Ćœ. DjokoviÄ and Jerry Malzan, Imprimitive, irreducible complex characters of the alternating group, Canad. J. Math. 28 (1976), no. 6, 1199â1204. MR 0419580
- [36] Hikoe Enomoto, The characters of the finite Chevalley group $G_{2}(q),q=3^{f}$, Japan. J. Math. (N.S.) 2 (1976), no. 2, 191â248. MR 0437628
- [37] Hikoe Enomoto and Hiromichi Yamada, The characters of $G_2(2^n)$, Japan. J. Math. (N.S.) 12 (1986), no. 2, 325â377. MR 914301
- [38] Peter Fleischmann and Ingo Janiszczak, The semisimple conjugacy classes of finite groups of Lie type $E_6$ and $E_7$, Comm. Algebra 21 (1993), no. 1, 93â161. MR 1194553, 10.1080/00927879208824553
- [39] Peter Fleischmann and Ingo Janiszczak, The semisimple conjugacy classes and the generic class number of the finite simple groups of Lie type $E_8$, Comm. Algebra 22 (1994), no. 6, 2221â2303. MR 1268550, 10.1080/00927879408824962
- [40] Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109â153. MR 671655, 10.1007/BF01389188
- [41] Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122â191. MR 988550
- [42] The GAP Group. GAP â Groups, Algorithms, and Programming, Version 4.5.6, 2012. http://www.gap-system.org.
- [43] M. Geck. Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ. Dissertation, RWTH Aachen University, 1990.
- [44] Meinolf Geck and Gerhard Hiss, Modular representations of finite groups of Lie type in non-defining characteristic, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, BirkhĂ€user Boston, Boston, MA, 1997, pp. 195â249. MR 1429874
- [45] Meinolf Geck, Gerhard Hiss, Frank LĂŒbeck, Gunter Malle, and Götz Pfeiffer, CHEVIEâa system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175â210. Computational methods in Lie theory (Essen, 1994). MR 1486215, 10.1007/BF01190329
- [46] Meinolf Geck, Gerhard Hiss, and Gunter Malle, Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), no. 3, 353â386. MR 1381586, 10.1007/PL00004253
- [47] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
- [48] Rod Gow and Wolfgang Willems, On the quadratic type of some simple self-dual modules over fields of characteristic two, J. Algebra 195 (1997), no. 2, 634â649. MR 1469644, 10.1006/jabr.1997.7048
- [49] Jochen Gruber and Gerhard Hiss, Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math. 485 (1997), 55â91. MR 1442189, 10.1515/crll.1997.485.55
- [50] Robert M. Guralnick and Pham Huu Tiep, Cross characteristic representations of even characteristic symplectic groups, Trans. Amer. Math. Soc. 356 (2004), no. 12, 4969â5023 (electronic). MR 2084408, 10.1090/S0002-9947-04-03477-4
- [51] G. Hiss. Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik. Habilitationsschrift, RWTH Aachen University, 1990. http://www.math.rwth-aachen.de/ËGerhard.Hiss/.
- [52] Gerhard Hiss, Decomposition matrices of the Chevalley group $F_4(2)$ and its covering group, Comm. Algebra 25 (1997), no. 8, 2539â2555. MR 1459575, 10.1080/00927879708826004
- [53] G. Hiss, C. Jansen, K. Lux and R. Parker. Computational Modular Character Theory. http://www.math.rwth-aachen.de/ËMOC/CoMoChaT/.
- [54] Gerhard Hiss and Radha Kessar, Scopes reduction and Morita equivalence classes of blocks in finite classical groups, J. Algebra 230 (2000), no. 2, 378â423. MR 1775797, 10.1006/jabr.2000.8319
- [55] G. Hiss and K. Lux, Brauer trees of sporadic groups, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989. MR 1033265
- [56] Gerhard Hiss and Klaus Lux, The $5$-modular characters of the sporadic simple Fischer groups ${\rm Fi}_{22}$ and ${\rm Fi}_{23}$, Comm. Algebra 22 (1994), no. 9, 3563â3590. With an appendix by Thomas Breuer. MR 1278806, 10.1080/00927879408825042
- [57] Gerhard Hiss and Gunter Malle, Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math. 4 (2001), 22â63 (electronic). MR 1835851, 10.1112/S1461157000000796
- [58] Gerhard Hiss, Max Neunhöffer, and Felix Noeske, The 2-modular characters of the Fischer group $\rm Fi_{23}$, J. Algebra 300 (2006), no. 2, 555â570. MR 2228211, 10.1016/j.jalgebra.2005.06.039
- [59] Gerhard Hiss and Donald L. White, The $5$-modular characters of the covering group of the sporadic simple Fischer group ${\rm Fi}_{22}$ and its automorphism group, Comm. Algebra 22 (1994), no. 9, 3591â3611. MR 1278807, 10.1080/00927879408825043
- [60] P. N. Hoffman and J. F. Humphreys, Projective representations of the symmetric groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. $Q$-functions and shifted tableaux; Oxford Science Publications. MR 1205350
- [61] Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62â80. MR 576184, 10.1112/jlms/s2-21.1.62
- [62] R. B. Howlett and G. I. Lehrer, Representations of generic algebras and finite groups of Lie type, Trans. Amer. Math. Soc. 280 (1983), no. 2, 753â779. MR 716849, 10.1090/S0002-9947-1983-0716849-6
- [63] R. B. Howlett and G. I. Lehrer, On Harish-Chandra induction and restriction for modules of Levi subgroups, J. Algebra 165 (1994), no. 1, 172â183. MR 1272585, 10.1006/jabr.1994.1104
- [64] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- [65] Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- [66] William Jude Husen, Maximal embeddings of alternating groups in the classical groups, ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)âWayne State University. MR 2696822
- [67] William J. Husen, Irreducible modules for classical and alternating groups, J. Algebra 226 (2000), no. 2, 977â989. MR 1752771, 10.1006/jabr.1999.8213
- [68] William J. Husen, Restrictions of $\Omega _m(q)$-modules to alternating groups, Pacific J. Math. 192 (2000), no. 2, 297â306. MR 1744571, 10.2140/pjm.2000.192.297
- [69] Gordon James, The decomposition matrices of ${\rm GL}_n(q)$ for $n\le 10$, Proc. London Math. Soc. (3) 60 (1990), no. 2, 225â265. MR 1031453, 10.1112/plms/s3-60.2.225
- [70] G. D. James and A. Kerber. The Representation Theory of the Symmetric Group. Encyclopedia Math. 16, 1988.
- [71] Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
- [72] Peter B. Kleidman, The maximal subgroups of the finite $8$-dimensional orthogonal groups $P\Omega ^+_8(q)$ and of their automorphism groups, J. Algebra 110 (1987), no. 1, 173â242. MR 904187, 10.1016/0021-8693(87)90042-1
- [73] Peter B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups $^2G_2(q)$, and their automorphism groups, J. Algebra 117 (1988), no. 1, 30â71. MR 955589, 10.1016/0021-8693(88)90239-6
- [74] Peter B. Kleidman, The maximal subgroups of the Steinberg triality groups $^3D_4(q)$ and of their automorphism groups, J. Algebra 115 (1988), no. 1, 182â199. MR 937609, 10.1016/0021-8693(88)90290-6
- [75] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
- [76] Hans Kurzweil and Bernd Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004. An introduction; Translated from the 1998 German original. MR 2014408
- [77] Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418â443. MR 0360852
- [78] P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR 737910
- [79] Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426â446. MR 779398, 10.1112/plms/s3-50.3.426
- [80] Martin W. Liebeck and Jan Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 55 (1987), no. 2, 299â330. MR 896223, 10.1093/plms/s3-55_2.299
- [81] Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, Proc. London Math. Soc. (3) 55 (1987), no. 3, 507â537. MR 907231, 10.1112/plms/s3-55.3.507
- [82] Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 65 (1992), no. 2, 297â325. MR 1168190, 10.1112/plms/s3-65.2.297
- [83] Martin W. Liebeck and Gary M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedicata 35 (1990), no. 1-3, 353â387. MR 1066572, 10.1007/BF00147353
- [84] Frank LĂŒbeck, Finding $pâ$-elements in finite groups of Lie type, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 249â255. MR 1829484
- [85] Frank LĂŒbeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135â169 (electronic). MR 1901354, 10.1112/S1461157000000838
- [86] F. LĂŒbeck. Character Degrees and their Multiplicities for some Groups of Lie Type of Rank . http://www.math.rwth-aachen.de/ËFrank.Luebeck/chev/DegMult/index.html.
- [87] F. LĂŒbeck. Characters and Brauer trees of the covering group of . Preprint.
- [88] F. LĂŒbeck. Elements with only negative cycles in Weyl groups of type and . Preprint, arXiv:1302.6096.
- [89] Frank LĂŒbeck, Alice C. Niemeyer, and Cheryl E. Praeger, Finding involutions in finite Lie type groups of odd characteristic, J. Algebra 321 (2009), no. 11, 3397â3417. MR 2510054, 10.1016/j.jalgebra.2008.05.009
- [90] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125â175. MR 0463275
- [91] George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
- [92] G. Lusztig, On the representations of reductive groups with disconnected centre, AstĂ©risque 168 (1988), 10, 157â166. Orbites unipotentes et reprĂ©sentations, I. MR 1021495
- [93] Kay Magaard, Gerhard Röhrle, and Donna M. Testerman, On the irreducibility of symmetrizations of cross-characteristic representations of finite classical groups, J. Pure Appl. Algebra 217 (2013), no. 8, 1427â1446. MR 3030545, 10.1016/j.jpaa.2012.11.004
- [94] Kay Magaard and Pham Huu Tiep, Irreducible tensor products of representations of finite quasi-simple groups of Lie type, Modular representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin, 2001, pp. 239â262. MR 1889349
- [95] K. Magaard and P. H. Tiep. Quasisimple subgroups of -subgroups and -subgroups of finite classical groups. Preprint.
- [96] Gunter Malle, Die unipotenten Charaktere von ${}^2F_4(q^2)$, Comm. Algebra 18 (1990), no. 7, 2361â2381 (German). MR 1063140, 10.1080/00927879008824026
- [97] Gunter Malle, The maximal subgroups of ${}^2F_4(q^2)$, J. Algebra 139 (1991), no. 1, 52â69. MR 1106340, 10.1016/0021-8693(91)90283-E
- [98] Edward Thomas Migliore, DETERMINATION OF THE MAXIMAL SUBGROUP OF G(,2)(Q), Q ODD, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)âUniversity of California, Santa Cruz. MR 2632866
- [99] Daniel Nett and Felix Noeske, The imprimitive faithful complex characters of the Schur covers of the symmetric and alternating groups, J. Group Theory 14 (2011), no. 3, 413â435. MR 2794376, 10.1515/JGT.2010.066
- [100] Felix Noeske, The 2- and 3-modular characters of the sporadic simple Fischer group ${\rm Fi}_{22}$ and its cover, J. Algebra 309 (2007), no. 2, 723â743. MR 2303203, 10.1016/j.jalgebra.2006.06.020
- [101] Masaru Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ. 4 (1954), 39â56. MR 0067897
- [102] G. Pfeiffer. Charakterwerte von Iwahori-Hecke-Algebren von klassischem Typ. Dissertation, RWTH Aachen University, 1995, Aachener BeitrÀge zur Mathematik, Verlag der Augustinus Buchhandlung, Aachen, 1995.
- [103] A. A. Schaeffer Fry. Cross-characteristic representations of and their restrictions to proper subgroups. J. Pure Appl. Algebra, 2012, doi:10.1016/j.jpaa.2012.11.011.
- [104] I. Schur. Ăber die reellen Kollineationsgruppen, die der symmetrischen oder der alternierenden Gruppe isomorph sind. J. reine angew. Math. 158:63â79, 1927.
- [105] Gary M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc. 67 (1987), no. 365, iv+286. MR 888704, 10.1090/memo/0365
- [106] Gary M. Seitz, Representations and maximal subgroups of finite groups of Lie type, Geom. Dedicata 25 (1988), no. 1-3, 391â406. Geometries and groups (Noordwijkerhout, 1986). MR 925844, 10.1007/BF00191934
- [107] Gary M. Seitz, Cross-characteristic embeddings of finite groups of Lie type, Proc. London Math. Soc. (3) 60 (1990), no. 1, 166â200. MR 1023808, 10.1112/plms/s3-60.1.166
- [108] Gary M. Seitz and Donna M. Testerman, Extending morphisms from finite to algebraic groups, J. Algebra 131 (1990), no. 2, 559â574. MR 1058566, 10.1016/0021-8693(90)90195-T
- [109] Ken-ichi Shinoda, The conjugacy classes of Chevalley groups of type $(F_{4})$ over finite fields of characteristic $2$, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 21 (1974), 133â159. MR 0349863
- [110] Ken-ichi Shinoda, The conjugacy classes of the finite Ree groups of type $(F_{4})$, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 22 (1975), 1â15. MR 0372064
- [111] Toshiaki Shoji, The conjugacy classes of Chevalley groups of type $(F_{4})$ over finite fields of characteristic $p\not =2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 1â17. MR 0357641
- [112] Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33â56. MR 0155937
- [113] Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105â145. MR 0136646
- [114] Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
- [115] Donna M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 75 (1988), no. 390, iv+190. MR 961210, 10.1090/memo/0390
- [116] Donald L. White, Brauer trees of $2.F_4(2)$, Comm. Algebra 20 (1992), no. 11, 3353â3368. MR 1186712, 10.1080/00927879208824519
- [117]
R. A. Wilson.
ATLAS of Finite Group Representations, [[tt]]http://brauer.maths.[[tt]]qmul.ac.uk/Atlas/. - [118] Robert A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag London, Ltd., London, 2009. MR 2562037