AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
On Non-topological Solutions of the $\textbf {A}_2$ and $\textbf {B}_2$ Chern-Simons System
About this Title
Weiwei Ao, Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong, Chang-Shou Lin, Taida Institute of Mathematics, Center for Advanced study in Theoretical Science, National Taiwan University, Taipei, Taiwan and Juncheng Wei, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 and Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 239, Number 1132
ISBNs: 978-1-4704-1543-3 (print); 978-1-4704-2747-4 (online)
DOI: https://doi.org/10.1090/memo/1132
Published electronically: June 30, 2015
MSC: Primary 35J60; Secondary 35B10, 58J37
Table of Contents
Chapters
- 1. Introduction
- 2. Proof of Theorem in the $\textbf {A}_2$ case
- 3. Proof of Theorem in the $\textbf {B}_2$ case
- 4. Appendix
Abstract
For any rank 2 of simple Lie algebra, the relativistic Chern-Simons system has the following form: \begin{equation*}\left \lbrace \begin {array}{@{}l@{\quad }l@{}}\Delta u_1+(\sum _{i=1}^2K_{1xi}e^{u_i} -\sum _{i=1}^2\sum _{j=1}^2e^{u_i}K_{1i}e^{u_j}K_{ij})=4\pi \displaystyle \sum _{j=1}^{N_1}\delta _{p_j}\\ \Delta u_2+(\sum _{i=1}^2K_{2i}e^{u_i}-\sum _{i=1}^2\sum _{j=1}^2e^{u_i}K_{2i}e^{u_j}K_{ij})=4\pi \displaystyle \sum _{j=1}^{N_2}\delta _{q_j} \end{array} \right . \quad \mathrm {in}\; \mathbb {R}^2, \end{equation*} where $K$ is the Cartan matrix of rank $2$. There are three Cartan matrix of rank 2: $\textbf {A}_2$, $\textbf {B}_2$ and $\textbf {G}_2$. A long-standing open problem for this equation is the question of the existence of non-topological solutions. In this paper, we consider the $\textbf {A}_2$ and $\textbf {B}_2$ case. We prove the existence of non-topological solutions under the condition that either $N_2\sum _{j=1}^{N_1} p_j=N_1\sum _{j=1}^{N_2} q_j$ or $N_2\sum _{j=1}^{N_1} p_j \not = N_1\sum _{j=1}^{N_2} q_j$ and $N_1, N_2 >1, |N_1-N_2| \not = 1$. We solve this problem by a perturbation from the corresponding $\textbf {A}_2$ and $\textbf {B}_2$ Toda system with one singular source.- Luis A. Caffarelli and Yi Song Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), no. 2, 321–336. MR 1324400
- Dongho Chae and Oleg Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000), no. 1, 119–142. MR 1800920, DOI 10.1007/s002200000302
- Hsungrow Chan, Chun-Chieh Fu, and Chang-Shou Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), no. 2, 189–221. MR 1946331, DOI 10.1007/s00220-002-0691-6
- Jann-Long Chern, Zhi-You Chen, and Chang-Shou Lin, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, Comm. Math. Phys. 296 (2010), no. 2, 323–351. MR 2608118, DOI 10.1007/s00220-010-1021-z
- Kwangseok Choe, Namkwon Kim, and Chang-Shou Lin, Existence of self-dual non-topological solutions in the Chern-Simons Higgs model, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 6, 837–852 (English, with English and French summaries). MR 2859930, DOI 10.1016/j.anihpc.2011.06.003
- Adam Doliwa, Holomorphic curves and Toda systems, Lett. Math. Phys. 39 (1997), no. 1, 21–32. MR 1432790, DOI 10.1007/s11005-997-1032-7
- Gerald Dunne, Mass degeneracies in self-dual models, Phys. Lett. B 345 (1995), no. 4, 452–457. MR 1318189, DOI 10.1016/0370-2693(94)01649-W
- G. Dunne, Self-dual Chern-Simons Theories. Lecture Notes in Physics, vol. m36(1995), Berlin-New York, Spring-Verlag.
- Gerald Dunne, Vacuum mass spectra for $\textrm {SU}(N)$ self-dual Chern-Simons-Higgs systems, Nuclear Phys. B 433 (1995), no. 2, 333–348. MR 1310311, DOI 10.1016/0550-3213(94)00476-U
- Manuel del Pino, Pierpaolo Esposito, and Monica Musso, Nondegeneracy of entire solutions of a singular Liouvillle equation, Proc. Amer. Math. Soc. 140 (2012), no. 2, 581–588. MR 2846326, DOI 10.1090/S0002-9939-2011-11134-1
- Jooyoo Hong, Yoonbai Kim, and Pong Youl Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990), no. 19, 2230–2233. MR 1050529, DOI 10.1103/PhysRevLett.64.2230
- R. Jackiw and Erick J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), no. 19, 2234–2237. MR 1050530, DOI 10.1103/PhysRevLett.64.2234
- Hsien-Chung Kao and Kimyeong Lee, Self-dual $\textrm {SU}(3)$ Chern-Simons Higgs systems, Phys. Rev. D (3) 50 (1994), no. 10, 6626–6632. MR 1304034, DOI 10.1103/PhysRevD.50.6626
- Kimyeong Lee, Relativistic nonabelian self-dual Chern-Simons systems, Phys. Lett. B 255 (1991), no. 3, 381–384. MR 1095005, DOI 10.1016/0370-2693(91)90782-L
- Kimyeong Lee, Self-dual nonabelian Chern-Simons solitons, Phys. Rev. Lett. 66 (1991), no. 5, 553–555. MR 1088690, DOI 10.1103/PhysRevLett.66.553
- Chang-Shou Lin, Juncheng Wei, and Dong Ye, Classification and nondegeneracy of $SU(n+1)$ Toda system with singular sources, Invent. Math. 190 (2012), no. 1, 169–207. MR 2969276, DOI 10.1007/s00222-012-0378-3
- Chang-Shou Lin and Shusen Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys. 297 (2010), no. 3, 733–758. MR 2653901, DOI 10.1007/s00220-010-1056-1
- Chang-Shou Lin and Shusen Yan, Bubbling solutions for the $\textrm {SU}(3)$ Chern-Simons model on a torus, Comm. Pure Appl. Math. 66 (2013), no. 7, 991–1027. MR 3055584, DOI 10.1002/cpa.21454
- Andrea Malchiodi and David Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal. 21 (2011), no. 5, 1196–1217. MR 2846387, DOI 10.1007/s00039-011-0134-7
- Andrea Malchiodi and David Ruiz, A variational analysis of the Toda system on compact surfaces, Comm. Pure Appl. Math. 66 (2013), no. 3, 332–371. MR 3008227, DOI 10.1002/cpa.21433
- Margherita Nolasco and Gabriella Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), no. 1, 31–94. MR 1710938, DOI 10.1007/s005260050132
- Margherita Nolasco and Gabriella Tarantello, Vortex condensates for the $\textrm {SU}(3)$ Chern-Simons theory, Comm. Math. Phys. 213 (2000), no. 3, 599–639. MR 1785431, DOI 10.1007/s002200000252
- J. Prajapat and G. Tarantello, On a class of elliptic problems in ${\Bbb R}^2$: symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 4, 967–985. MR 1855007, DOI 10.1017/S0308210500001219
- Joel Spruck and Yi Song Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 1, 75–97 (English, with English and French summaries). MR 1320569, DOI 10.1016/S0294-1449(16)30168-8
- Joel Spruck and Yi Song Yang, The existence of nontopological solitons in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992), no. 2, 361–376. MR 1186034
- Gabriella Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), no. 8, 3769–3796. MR 1400816, DOI 10.1063/1.531601
- Gabriella Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differential Equations 29 (2007), no. 2, 191–217. MR 2307772, DOI 10.1007/s00526-006-0062-9
- Ronggang Wang, The existence of Chern-Simons vortices, Comm. Math. Phys. 137 (1991), no. 3, 587–597. MR 1105432
- Juncheng Wei, Chunyi Zhao, and Feng Zhou, On nondegeneracy of solutions to $\textrm {SU}(3)$ Toda system, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 185–190 (English, with English and French summaries). MR 2769905, DOI 10.1016/j.crma.2010.11.025
- Guofang Wang and Liqun Zhang, Non-topological solutions of the relativistic $\textrm {SU}(3)$ Chern-Simons Higgs model, Comm. Math. Phys. 202 (1999), no. 3, 501–515. MR 1690951, DOI 10.1007/s002200050593
- Yisong Yang, Solitons in field theory and nonlinear analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. MR 1838682
- Yisong Yang, The relativistic non-abelian Chern-Simons equations, Comm. Math. Phys. 186 (1997), no. 1, 199–218. MR 1462762, DOI 10.1007/BF02885678