Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


The Fourier Transform for Certain HyperKähler Fourfolds

About this Title

Mingmin Shen, Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090GE, Amsterdam, Netherlands and Charles Vial, DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Publication: Memoirs of the American Mathematical Society
Publication Year: 2016; Volume 240, Number 1139
ISBNs: 978-1-4704-1740-6 (print); 978-1-4704-2830-3 (online)
DOI: https://doi.org/10.1090/memo/1139
Published electronically: November 18, 2015
Keywords: HyperKähler manifolds, irreducible holomorphic symplectic varieties, cubic fourfolds, Fano schemes of lines, K3 surfaces, Hilbert schemes of points, Abelian varieties, motives, algebraic cycles, Chow groups, Chow ring, Chow–Künneth decomposition, Bloch–Beilinson filtration, modified diagonals
MSC: Primary 14C25, 14C15, 53C26, 14J28, 14J32, 14K99, 14C17

View full volume PDF

View other years and numbers:

Table of Contents

Chapters

  • Introduction

1. The Fourier Transform for HyperKähler Fourfolds

  • 1. The Cohomological Fourier Transform
  • 2. The Fourier Transform on the Chow Groups of HyperKähler Fourfolds
  • 3. The Fourier Decomposition Is Motivic
  • 4. First Multiplicative Results
  • 5. An Application to Symplectic Automorphisms
  • 6. On the Birational Invariance of the Fourier Decomposition
  • 7. An Alternate Approach to the Fourier Decomposition on the Chow Ring of Abelian Varieties
  • 8. Multiplicative Chow–Künneth Decompositions
  • 9. Algebraicity of $\mathfrak {B}$ for HyperKähler Varieties of $\mathrm {K3}^{[n]}$-type

2. The Hilbert Scheme $S^{[2]}$

  • 10. Basics on the Hilbert Scheme of Length-$2$ Subschemes on a Variety $X$
  • 11. The Incidence Correspondence $I$
  • 12. Decomposition Results on the Chow Groups of $X^{[2]}$
  • 13. Multiplicative Chow–Künneth Decomposition for $X^{[2]}$
  • 14. The Fourier Decomposition for $S^{[2]}$
  • 15. The Fourier Decomposition for $S^{[2]}$ is Multiplicative
  • 16. The Cycle $L$ of $S^{[2]}$ via Moduli of Stable Sheaves

3. The Variety of Lines on a Cubic Fourfold

  • 17. The Incidence Correspondence $I$
  • 18. The Rational Self-Map $\varphi : F \dashrightarrow F$
  • 19. The Fourier Decomposition for $F$
  • 20. A First Multiplicative Result
  • 21. The Rational Self-Map $\varphi :F\dashrightarrow F$ and the Fourier Decomposition
  • 22. The Fourier Decomposition for $F$ is Multiplicative
  • A. Some Geometry of Cubic Fourfolds
  • B. Rational Maps and Chow Groups

Abstract

Using a codimension-$1$ algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $\mathrm {CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville–Bogomolov class, we give evidence for the existence of a similar decomposition for the Chow ring of hyperKähler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. We indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.

References [Enhancements On Off] (What's this?)

References