
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Descent Construction for GSpin groups
About this Title
Joseph Hundley, Department of Mathematics, 244 Mathematics Building, University at Buffalo, Buffalo, NY 14260-2900 and Eitan Sayag, Department of Mathematics , Ben Gurion University of the Negev , P.O.B. 653 , Be’er Sheva 8410501, ISRAEL
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 243, Number 1148
ISBNs: 978-1-4704-1667-6 (print); 978-1-4704-3444-1 (online)
DOI: https://doi.org/10.1090/memo/1148
Published electronically: April 12, 2016
Keywords: Langlands functoriality,
descent,
unipotent integration
MSC: Primary 11F70, 11F55
Table of Contents
Chapters
- 1. Introduction
1. General matters
- 2. Some notions related to Langlands functoriality
- 3. Notation
- 4. The Spin groups $GSpin_{m}$ and their quasisplit forms
- 5. “Unipotent periods”
2. Odd case
- 6. Notation and statement
- 7. Unramified correspondence
- 8. Eisenstein series I: Construction and main statements
- 9. Descent construction
- 10. Appendix I: Local results on Jacquet functors
- 11. Appendix II: Identities of unipotent periods
3. Even case
- 12. Formulation of the main result in the even case
- 13. Notation
- 14. Unramified correspondence
- 15. Eisenstein series
- 16. Descent construction
- 17. Appendix III: Preparations for the proof of Theorem
- 18. Appendix IV: Proof of Theorem
- 19. Appendix V: Auxilliary results used to prove Theorem
- 20. Appendix VI: Local results on Jacquet functors
- 21. Appendix VII: Identities of unipotent periods
Abstract
In this paper we provide an extension of the theory of descent of Ginzburg-Rallis-Soudry to the context of essentially self-dual representations, that is representations which are isomorphic to the twist of their own contragredient by some Hecke character. Our theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and quasisplit forms of) $GSpin_{2n}$ to $GL_{2n}.$\bibliographystyle{amsalpha}
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650
- Mahdi Asgari, Local $L$-functions for split spinor groups, Canad. J. Math. 54 (2002), no. 4, 673–693. MR 1913914, DOI 10.4153/CJM-2002-025-8
- M. Asgari, J. Cogdell and F. Shahidi. Rankin-Selberg L-functions for General Spin Groups. In preparation.
- M. Asgari, J. Cogdell and F. Shahidi. Local Transfer and Reducibility of Induced Representations of $p$-adic Classical Groups. In preparation
- Mahdi Asgari and A. Raghuram, A cuspidality criterion for the exterior square transfer of cusp forms on $\textrm {GL}(4)$, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 33–53. MR 2767509
- Mahdi Asgari and Freydoon Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no. 1, 137–190. MR 2219256, DOI 10.1215/S0012-7094-06-13214-3
- Mahdi Asgari and Freydoon Shahidi, Generic transfer from $\rm GSp(4)$ to $\rm GL(4)$, Compos. Math. 142 (2006), no. 3, 541–550. MR 2231191, DOI 10.1112/S0010437X06001904
- M. Asgari and F. Shahidi, Image of functoriality for General Spin Groups, preprint, available at https://www.math.okstate.edu/$\sim$asgari/res.html
- William D. Banks, Twisted symmetric-square $L$-functions and the nonexistence of Siegel zeros on $\textrm {GL}(3)$, Duke Math. J. 87 (1997), no. 2, 343–353. MR 1443531, DOI 10.1215/S0012-7094-97-08713-5
- William David Banks, Exceptional representations on the metaplectic group, ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–Stanford University. MR 2691652
- Rolf Berndt and Ralf Schmidt, Elements of the representation theory of the Jacobi group, Progress in Mathematics, vol. 163, Birkhäuser Verlag, Basel, 1998. MR 1634977
- Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508
- Daniel Bump and David Ginzburg, Symmetric square $L$-functions on $\textrm {GL}(r)$, Ann. of Math. (2) 136 (1992), no. 1, 137–205. MR 1173928, DOI 10.2307/2946548
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
- P. Cartier, Representations of $p$-adic groups: a survey, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–155. MR 546593
- W. Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, Available at http://www.math.ubc.ca/$\sim$cass/research.html
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $\textrm {GL}_N$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5–30. MR 1863734, DOI 10.1007/s10240-001-8187-z
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163–233. MR 2075885, DOI 10.1007/s10240-004-0020-z
- Wee Teck Gan and Shuichiro Takeda, The local Langlands conjecture for $\textrm {GSp}(4)$, Ann. of Math. (2) 173 (2011), no. 3, 1841–1882. MR 2800725, DOI 10.4007/annals.2011.173.3.12
- Stephen Gelbart and Freydoon Shahidi, Analytic properties of automorphic $L$-functions, Perspectives in Mathematics, vol. 6, Academic Press, Inc., Boston, MA, 1988. MR 951897
- Stephen Gelbart and David Soudry, On Whittaker models and the vanishing of Fourier coefficients of cusp forms, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 67–74 (1988). MR 983606, DOI 10.1007/BF02837815
- I. M. Gel′fand and D. A. Kajdan, Representations of the group $\textrm {GL}(n,K)$ where $K$ is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 95–118. MR 0404534
- David Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations, Israel J. Math. 151 (2006), 323–355. MR 2214128, DOI 10.1007/BF02777366
- David Ginzburg and Erez Lapid, On a conjecture of Jacquet, Lai, and Rallis: some exceptional cases, Canad. J. Math. 59 (2007), no. 6, 1323–1340. MR 2363069, DOI 10.4153/CJM-2007-057-9
- D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis, $L$ functions for the orthogonal group, Mem. Amer. Math. Soc. 128 (1997), no. 611, viii+218. MR 1357823, DOI 10.1090/memo/0611
- David Ginzburg, Stephen Rallis, and David Soudry, On a correspondence between cuspidal representations of $\textrm {GL}_{2n}$ and $\widetilde \textrm {Sp}_{2n}$, J. Amer. Math. Soc. 12 (1999), no. 3, 849–907. MR 1671452, DOI 10.1090/S0894-0347-99-00300-8
- David Ginzburg, Stephen Rallis, and David Soudry, Lifting cusp forms on $\textrm {GL}_{2n}$ to $\tilde \textrm {Sp}_{2n}$: the unramified correspondence, Duke Math. J. 100 (1999), no. 2, 243–266. MR 1722953, DOI 10.1215/S0012-7094-99-10009-3
- David Ginzburg, Stephen Rallis, and David Soudry, On explicit lifts of cusp forms from $\textrm {GL}_m$ to classical groups, Ann. of Math. (2) 150 (1999), no. 3, 807–866. MR 1740991, DOI 10.2307/121057
- David Ginzburg, Stephen Rallis, and David Soudry, Generic automorphic forms on $\textrm {SO}(2n+1)$: functorial lift to $\textrm {GL}(2n)$, endoscopy, and base change, Internat. Math. Res. Notices 14 (2001), 729–764. MR 1846354, DOI 10.1155/S1073792801000381
- David Ginzburg, Stephen Rallis, and David Soudry, Endoscopic representations of ${\widetilde \textrm {Sp}}_{2n}$, J. Inst. Math. Jussieu 1 (2002), no. 1, 77–123. MR 1954940, DOI 10.1017/S1474748002000026
- David Ginzburg, Stephen Rallis, and David Soudry, On the automorphic theta representation for simply laced groups, Israel J. Math. 100 (1997), 61–116. MR 1469105, DOI 10.1007/BF02773635
- David Ginzburg, Stephen Rallis, and David Soudry, The descent map from automorphic representations of $\textrm {GL}(n)$ to classical groups, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2848523
- D. Ginzburg, S. Rallis, and D. Soudry, On Fourier coefficients of automorphic forms of symplectic groups, Manuscripta Math. 111 (2003), no. 1, 1–16. MR 1981592, DOI 10.1007/s00229-003-0355-7
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- G. Henniart, Correspondance de Langlands et fonctions $L$ des carrés extérieur et symétrique, IHES preprint M03-20, available at http://www.ihes.fr/PREPRINTS/M03/M03-20.pdf
- Joseph Hundley and Eitan Sayag, Descent construction for GSpin groups: main results and applications, Electron. Res. Announc. Math. Sci. 16 (2009), 30–36. MR 2505178, DOI 10.3934/era.2009.16.30
- Jun-ichi Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. MR 277558, DOI 10.2307/2373406
- Hervé Jacquet, Generic representations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 91–101. Lecture Notes in Math., Vol. 587. MR 0499005
- Hervé Jacquet and Joseph Shalika, Exterior square $L$-functions, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 143–226. MR 1044830
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815. MR 623137, DOI 10.2307/2374050
- Hervé Jacquet and Joseph Shalika, The Whittaker models of induced representations, Pacific J. Math. 109 (1983), no. 1, 107–120. MR 716292
- Dihua Jiang and David Soudry, The local converse theorem for $\textrm {SO}(2n+1)$ and applications, Ann. of Math. (2) 157 (2003), no. 3, 743–806. MR 1983781, DOI 10.4007/annals.2003.157.743
- David Kazhdan, On lifting, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249. MR 748509, DOI 10.1007/BFb0073149
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions: application to exterior square $L$-functions, Canad. J. Math. 51 (1999), no. 4, 835–849. MR 1701344, DOI 10.4153/CJM-1999-036-0
- Henry H. Kim, Automorphic $L$-functions, Lectures on automorphic $L$-functions, Fields Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, pp. 97–201. MR 2071507
- Henry H. Kim and Freydoon Shahidi, On simplicity of poles of automorphic $L$-functions, J. Ramanujan Math. Soc. 19 (2004), no. 4, 267–280. MR 2125503
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
- Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $\textrm {Sp}(n)$, Israel J. Math. 78 (1992), no. 2-3, 209–256. MR 1194967, DOI 10.1007/BF02808058
- J.-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\textrm {SL}(2)$, Canadian J. Math. 31 (1979), no. 4, 726–785. MR 540902, DOI 10.4153/CJM-1979-070-3
- Robert P. Langlands, Euler products, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967; Yale Mathematical Monographs, 1. MR 0419366
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
- R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 205–246. MR 546619
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752
- W. Müller and B. Speh, Absolute convergence of the spectral side of the Arthur trace formula for $\textrm {GL}_n$, Geom. Funct. Anal. 14 (2004), no. 1, 58–93. With an appendix by E. M. Lapid. MR 2053600, DOI 10.1007/s00039-004-0452-0
- Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169 (French). MR 2653248, DOI 10.1007/s10240-010-0026-7
- I. I. Piatetski-Shapiro, Multiplicity one theorems, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 209–212. MR 546599
- Dipendra Prasad and Dinakar Ramakrishnan, Self-dual representations of division algebras and Weil groups: a contrast, Amer. J. Math. 134 (2012), no. 3, 749–767. MR 2931222, DOI 10.1353/ajm.2012.0017
- Freydoon Shahidi, Langlands-Shahidi method, Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 299–330. MR 2331347, DOI 10.1090/pcms/012/06
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973–1007. MR 816396, DOI 10.1215/S0012-7094-85-05252-4
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, Whittaker models for real groups, Duke Math. J. 47 (1980), no. 1, 99–125. MR 563369
- Freydoon Shahidi, On non-vanishing of twisted symmetric and exterior square $L$-functions for $\textrm {GL}(n)$, Pacific J. Math. Special Issue (1997), 311–322. Olga Taussky-Todd: in memoriam. MR 1610812, DOI 10.2140/pjm.1997.181.311
- Allan J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR 544991
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713
- David Soudry, On Langlands functoriality from classical groups to $\textrm {GL}_n$, Astérisque 298 (2005), 335–390 (English, with English and French summaries). Automorphic forms. I. MR 2141707
- David Soudry, Rankin-Selberg convolutions for $\textrm {SO}_{2l+1}\times \textrm {GL}_n$: local theory, Mem. Amer. Math. Soc. 105 (1993), no. 500, vi+100. MR 1169228, DOI 10.1090/memo/0500
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688
- Marko Tadić, An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215–252. MR 1181278, DOI 10.1090/S0273-0979-1993-00372-0
- Shuichiro Takeda, The twisted symmetric square $L$-function of $\mathrm {GL}(r)$, Duke Math. J. 163 (2014), no. 1, 175–266. MR 3161314, DOI 10.1215/00127094-2405497
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
- J. T. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 305–347. MR 0217026
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084