
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Real Non-Abelian Mixed Hodge Structures for Quasi-Projective Varieties: Formality and Splitting
About this Title
J. P. Pridham, School of Mathematics and Maxwell Institute of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom
Publication: Memoirs of the American Mathematical Society
Publication Year:
2016; Volume 243, Number 1150
ISBNs: 978-1-4704-1981-3 (print); 978-1-4704-3448-9 (online)
DOI: https://doi.org/10.1090/memo/1150
Published electronically: April 12, 2016
Keywords: Non-abelian Hodge theory
MSC: Primary 14C30; Secondary 14F35, 32S35, 55P62
Table of Contents
Chapters
- Introduction
- 1. Splittings for MHS on real homotopy types
- 2. Non-abelian structures
- 3. Structures on cohomology
- 4. Relative Malcev homotopy types
- 5. Structures on relative Malcev homotopy types
- 6. MHS on relative Malcev homotopy types of compact Kähler manifolds
- 7. MTS on relative Malcev homotopy types of compact Kähler manifolds
- 8. Variations of mixed Hodge and mixed twistor structures
- 9. Monodromy at the Archimedean place
- 10. Simplicial and singular varieties
- 11. Algebraic MHS/MTS for quasi-projective varieties I
- 12. Algebraic MHS/MTS for quasi-projective varieties II — non-trivial monodromy
- 13. Canonical splittings
- 14. $\mathrm {SL}_2$ splittings of non-abelian MTS/MHS and strictification
Abstract
We define and construct mixed Hodge structures on real schematic homotopy types of complex quasi-projective varieties, giving mixed Hodge structures on their homotopy groups and pro-algebraic fundamental groups. We also show that these split on tensoring with the ring $\mathbb {R}[x]$ equipped with the Hodge filtration given by powers of $(x-i)$, giving new results even for simply connected varieties. The mixed Hodge structures can thus be recovered from the Gysin spectral sequence of cohomology groups of local systems, together with the monodromy action at the Archimedean place. As the basepoint varies, these structures all become real variations of mixed Hodge structure.- J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo. Fundamental groups of compact Kähler manifolds, volume 44 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1996.
- Donu Arapura, The Hodge theoretic fundamental group and its cohomology, The geometry of algebraic cycles, Clay Math. Proc., vol. 9, Amer. Math. Soc., Providence, RI, 2010, pp. 3–22. MR 2648661
- A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR 862628, DOI 10.1090/conm/055.1/862628
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- Hyman Bass, Alexander Lubotzky, Andy R. Magid, and Shahar Mozes, The proalgebraic completion of rigid groups, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), 2002, pp. 19–58. MR 1950883, DOI 10.1023/A:1021221727311
- J. Carlson, H. Clemens, and J. Morgan, On the mixed Hodge structure associated to $\pi _{3}$ of a simply connected complex projective manifold, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 323–338. MR 644521
- Kuo Tsai Chen, Reduced bar constructions on de Rham complexes, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 19–32. MR 0413151
- Caterina Consani, Double complexes and Euler $L$-factors, Compositio Math. 111 (1998), no. 3, 323–358. MR 1617133, DOI 10.1023/A:1000362027455
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552
- Pierre Deligne, Poids dans la cohomologie des variétés algébriques, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 79–85. MR 0432648
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- Pierre Deligne, Structures de Hodge mixtes réelles, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 509–514 (French). MR 1265541
- Christopher Deninger, On the $\Gamma$-factors attached to motives, Invent. Math. 104 (1991), no. 2, 245–261. MR 1098609, DOI 10.1007/BF01245075
- Christopher Deninger, On the $\Gamma$-factors of motives. II, Doc. Math. 6 (2001), 69–97. MR 1836044
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35. MR 578563, DOI 10.1016/0022-4049(80)90113-9
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- Philippe Eyssidieux and Carlos Simpson, Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1769–1798. MR 2835329, DOI 10.4171/JEMS/293
- Philip Foth, Deformations of representations of fundamental groups of open Kähler manifolds, J. Reine Angew. Math. 513 (1999), 17–32. MR 1713317, DOI 10.1515/crll.1999.059
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612
- William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96. MR 972343
- A. B. Goncharov. Hodge correlators. arXiv:0803.0297v2 [math.AG], 2008.
- Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
- A. Grothendieck. Pursuing stacks. unpublished manuscript, 1983.
- Alexander Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris, 1995, pp. Exp. No. 195, 369–390 (French). MR 1603480
- Richard Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), no. 3, 597–651. MR 1431828, DOI 10.1090/S0894-0347-97-00235-X
- Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, $K$-Theory 1 (1987), no. 3, 271–324. MR 908993, DOI 10.1007/BF00533825
- Richard M. Hain, Completions of mapping class groups and the cycle $C-C^-$, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 75–105. MR 1234261, DOI 10.1090/conm/150/01287
- Richard M. Hain, The Hodge de Rham theory of relative Malcev completion, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 1, 47–92 (English, with English and French summaries). MR 1604294, DOI 10.1016/S0012-9593(98)80018-9
- Shai M. J. Haran. Non-additive prolegomena (to any future arithmetic that will be able to present itself as a geometry). arXiv:0911.3522, 2009.
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041
- G. Hochschild and G. D. Mostow, Pro-affine algebraic groups, Amer. J. Math. 91 (1969), 1127–1140. MR 255690, DOI 10.2307/2373319
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- V. A. Hinich and V. V. Schechtman, On homotopy limit of homotopy algebras, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 240–264. MR 923138, DOI 10.1007/BFb0078370
- Luc Illusie, Cohomologie de de Rham et cohomologie étale $p$-adique (d’après G. Faltings, J.-M. Fontaine et al.), Astérisque 189-190 (1990), Exp. No. 726, 325–374 (French). Séminaire Bourbaki, Vol. 1989/90. MR 1099881
- Daniel M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. (2) 68 (1958), 38–53. MR 111033, DOI 10.2307/1970042
- Mikhail Kapranov, Real mixed Hodge structures, J. Noncommut. Geom. 6 (2012), no. 2, 321–342. MR 2914868, DOI 10.4171/JNCG/93
- Maxim Kontsevich. Topics in algebra — deformation theory. Lecture Notes, available at http://www.math.brown.edu/$\sim$abrmovic/kontsdef.ps, 1994.
- L. Katzarkov, T. Pantev, and C. Simpson. Non-abelian mixed Hodge structures. arXiv:math/0006213v1 [math.AG], 2000.
- L. Katzarkov, T. Pantev, and B. Toën, Schematic homotopy types and non-abelian Hodge theory, Compos. Math. 144 (2008), no. 3, 582–632. MR 2422341, DOI 10.1112/S0010437X07003351
- L. Katzarkov, T. Pantev, and B. Toën, Algebraic and topological aspects of the schematization functor, Compos. Math. 145 (2009), no. 3, 633–686. MR 2507744, DOI 10.1112/S0010437X09004096
- Marco Manetti, Deformation theory via differential graded Lie algebras, Algebraic Geometry Seminars, 1998–1999 (Italian) (Pisa), Scuola Norm. Sup., Pisa, 1999, pp. 21–48. MR 1754793
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Takuro Mochizuki. A characterization of semisimple local system by tame pure imaginary pluri-harmonic metric. arXiv math.DG/0402122, 2004.
- Takuro Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$-modules. I, Mem. Amer. Math. Soc. 185 (2007), no. 869, xii+324. MR 2281877, DOI 10.1090/memo/0869
- John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137–204. MR 516917
- Antony J. Narkawicz. Cohomology jumping loci and relative Malcev completion. arXiv:0804.4164[math.AT], 2008.
- Martin C. Olsson, Towards non-abelian $p$-adic Hodge theory in the good reduction case, Mem. Amer. Math. Soc. 210 (2011), no. 990, vi+157. MR 2791384, DOI 10.1090/S0065-9266-2010-00625-2
- J. P. Pridham, Deforming $l$-adic representations of the fundamental group of a smooth variety, J. Algebraic Geom. 15 (2006), no. 3, 415–442. MR 2219844, DOI 10.1090/S1056-3911-06-00429-2
- J. P. Pridham. Non-abelian real Hodge theory for proper varieties. arXiv math.AG/0611686v4, 2006.
- Jonathan Pridham, The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 147–178 (English, with English and French summaries). MR 2325596
- J. P. Pridham, Pro-algebraic homotopy types, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 273–338. MR 2439664, DOI 10.1112/plms/pdn004
- J. P. Pridham, Weight decompositions on étale fundamental groups, Amer. J. Math. 131 (2009), no. 3, 869–891. MR 2530856, DOI 10.1353/ajm.0.0055
- J. P. Pridham, The homotopy theory of strong homotopy algebras and bialgebras, Homology Homotopy Appl. 12 (2010), no. 2, 39–108. MR 2721031
- J. P. Pridham, Unifying derived deformation theories, Adv. Math. 224 (2010), no. 3, 772–826. MR 2628795, DOI 10.1016/j.aim.2009.12.009
- Jonathan P. Pridham, Galois actions on homotopy groups of algebraic varieties, Geom. Topol. 15 (2011), no. 1, 501–607. MR 2788643, DOI 10.2140/gt.2011.15.501
- J. P. Pridham. Analytic non-abelian Hodge theory. Accepted for publication in Geometry and Topology. arXiv:1212.3708v1 [math.AG], 2012.
- J. P. Pridham, Derived moduli of schemes and sheaves, J. K-Theory 10 (2012), no. 1, 41–85. MR 2990562, DOI 10.1017/is011011012jkt175
- Jonathan P. Pridham, On $\ell$-adic pro-algebraic and relative pro-$\ell$ fundamental groups, The arithmetic of fundamental groups—PIA 2010, Contrib. Math. Comput. Sci., vol. 2, Springer, Heidelberg, 2012, pp. 245–279. MR 3220522, DOI 10.1007/978-3-642-23905-2_{1}1
- J. P. Pridham, Presenting higher stacks as simplicial schemes, Adv. Math. 238 (2013), 184–245. MR 3033634, DOI 10.1016/j.aim.2013.01.009
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- Claude Sabbah, Polarizable twistor $\scr D$-modules, Astérisque 300 (2005), vi+208 (English, with English and French summaries). MR 2156523
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093, DOI 10.1090/S0002-9947-1968-0217093-3
- Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
- Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 1–42 (French). MR 82175
- Carlos Simpson, The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217–281. MR 1492538, DOI 10.1090/pspum/062.2/1492538
- Carlos Simpson. Mixed twistor structures. arXiv:alg-geom/9705006v1, 1997.
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI 10.1007/BF01403146
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Joseph Steenbrink and Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. MR 791673, DOI 10.1007/BF01388729
- Klaus Timmerscheidt. Hodge decomposition for unitary local systems. Invent. Math., 86(1):189–194, 1986. Appendix to : Hélène Esnault, Eckart Viehweg, Logarithmic de Rham complexes and vanishing theorems.
- Klaus Timmerscheidt, Mixed Hodge theory for unitary local systems, J. Reine Angew. Math. 379 (1987), 152–171. MR 903638, DOI 10.1515/crll.1987.379.152
- Bertrand Toën, Champs affines, Selecta Math. (N.S.) 12 (2006), no. 1, 39–135 (French, with English summary). MR 2244263, DOI 10.1007/s00029-006-0019-z
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324