
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Rectifiable measures, square functions involving densities, and the Cauchy transform
About this Title
Xavier Tolsa, ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, and Dept. of Mathematics and BGSMath, Universitat Autònoma de Barcelona, 01893 Bellaterra, Catalonia
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 245, Number 1158
ISBNs: 978-1-4704-2252-3 (print); 978-1-4704-3605-6 (online)
DOI: https://doi.org/10.1090/memo/1158
Published electronically: July 15, 2016
Keywords: Rectifiability,
square function,
density,
Cauchy transform
MSC: Primary 28A75, 42B20; Secondary 28A78
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. A compactness argument
- 4. The dyadic lattice of cells with small boundaries
- 5. The Main Lemma
- 6. The stopping cells for the proof of Main Lemma
- 7. The measure $\tilde \mu$ and some estimates about its flatness
- 8. The measure of the cells from ${\mathsf {BCF}}$, ${\mathsf {LD}}$, ${\mathsf {BS}\Delta }$ and ${\mathsf {BCG}}$
- 9. The new families of cells ${{\mathsf {BS}\beta }}$, ${\mathsf {NTerm}}$, ${\mathsf {NGood}}$, ${\mathsf {NQgood}}$ and ${\mathsf {NReg}}$
- 10. The approximating curves $\Gamma ^k$
- 11. The small measure $\tilde \mu$ of the cells from ${{\mathsf {BS}\beta }}$
- 12. The approximating measure $\nu ^k$ on $\Gamma ^k_{ex}$
- 13. Square function estimates for $\nu ^k$
- 14. The good measure $\sigma ^k$ on $\Gamma ^k$
- 15. The $L^2(\sigma ^k)$ norm of the density of $\nu ^k$ with respect to $\sigma ^k$
- 16. The end of the proof of the Main Lemma
- 17. Proof of Theorem : Boundedness of $T_\mu$ implies boundedness of the Cauchy transform
- 18. Some Calderón-Zygmund theory for $T_\mu$
- 19. Proof of Theorem : Boundedness of the Cauchy transform implies boundedness of $T_\mu$
Abstract
This monograph is devoted to the proof of two related results. The first one asserts that if $\mu$ is a Radon measure in $\mathbb {R}^d$ satisfying \begin{equation*} \limsup _{r\to 0} \frac {\mu (B(x,r))}{r}>0\quad \mathrm {and}\quad \int _0^1\left |\frac {\mu (B(x,r))}{r} - \frac {\mu (B(x,2r))}{2r}\right |^2\,\frac {dr}r< \infty \end{equation*} for $\mu$-a.e. $x\in \mathbb {R}^d$, then $\mu$ is rectifiable. Since the converse implication is already known to hold, this yields the following characterization of rectifiable sets: a set $E\subset \mathbb {R}^d$ with finite $1$-dimensional Hausdorff measure $\mathcal {H}^1$ is rectifiable if and only if \[ \int _0^1\left |\frac {\mathcal {H}^1(E\cap B(x,r))}{r} - \frac {\mathcal {H}^1(E\cap B(x,2r))}{2r}\right |^2\,\frac {dr}r< \infty \qquad \mathrm {for}\; \mathcal {H}^1\mathrm {-a.e.}\ x\in E.\]
The second result of the monograph deals with the relationship between the above square function in the complex plane and the Cauchy transform $\mathcal {C}_\mu f(z) = \int \frac 1{z-\xi }\,f(\xi )\,d\mu (\xi )$. Assuming that $\mu$ has linear growth, it is proved that $\mathcal {C}_\mu$ is bounded in $L^2(\mu )$ if and only if \[ \displaystyle \int _{z\in Q}\int _0^\infty \left |\frac {\mu (Q\cap B(z,r))}{r} - \frac {\mu (Q\cap B(z,2r))}{2r}\right |^2\,\frac {dr}r\,d\mu (z)\leq c\,\mu (Q)\] for every square $Q\subset \mathbb {C}$.
- Jonas Azzam, Guy David, and Tatiana Toro, Wasserstein distance and the rectifiability of doubling measures: part I, Math. Ann. 364 (2016), no. 1-2, 151–224. MR 3451384, DOI 10.1007/s00208-015-1206-z
- Vasileios Chousionis, John Garnett, Triet Le, and Xavier Tolsa, Square functions and uniform rectifiability, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6063–6102. MR 3461027, DOI 10.1090/S0002-9947-2015-06557-X
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480
- Guy David, Unrectifiable $1$-sets have vanishing analytic capacity, Rev. Mat. Iberoamericana 14 (1998), no. 2, 369–479 (English, with English and French summaries). MR 1654535, DOI 10.4171/RMI/242
- G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1–56 (French). MR 850408, DOI 10.4171/RMI/17
- Guy David, Carlos Kenig, and Tatiana Toro, Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant, Comm. Pure Appl. Math. 54 (2001), no. 4, 385–449. MR 1808649, DOI 10.1002/1097-0312(200104)54:4<385::AID-CPA1>3.0.CO;2-M
- G. David and S. Semmes, Singular integrals and rectifiable sets in $\textbf {R}^n$: Beyond Lipschitz graphs, Astérisque 193 (1991), 152 (English, with French summary). MR 1113517
- Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993. MR 1251061
- Camillo De Lellis, Rectifiable sets, densities and tangent measures, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2388959
- Guy David and Pertti Mattila, Removable sets for Lipschitz harmonic functions in the plane, Rev. Mat. Iberoamericana 16 (2000), no. 1, 137–215. MR 1768535, DOI 10.4171/RMI/272
- Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15. MR 1069238, DOI 10.1007/BF01233418
- Bernd Kirchheim and David Preiss, Uniformly distributed measures in Euclidean spaces, Math. Scand. 90 (2002), no. 1, 152–160. MR 1887099, DOI 10.7146/math.scand.a-14367
- J. C. Léger, Menger curvature and rectifiability, Ann. of Math. (2) 149 (1999), no. 3, 831–869. MR 1709304, DOI 10.2307/121074
- J. M. Marstrand, Hausdorff two-dimensional measure in $3$-space, Proc. London Math. Soc. (3) 11 (1961), 91–108. MR 123670, DOI 10.1112/plms/s3-11.1.91
- Pertti Mattila, Hausdorff $m$ regular and rectifiable sets in $n$-space, Trans. Amer. Math. Soc. 205 (1975), 263–274. MR 357741, DOI 10.1090/S0002-9947-1975-0357741-4
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- M. S. Mel′nikov, Analytic capacity: a discrete approach and the curvature of measure, Mat. Sb. 186 (1995), no. 6, 57–76 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 6, 827–846. MR 1349014, DOI 10.1070/SM1995v186n06ABEH000045
- Albert Mas and Xavier Tolsa, Variation for the Riesz transform and uniform rectifiability, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 11, 2267–2321. MR 3283399, DOI 10.4171/JEMS/487
- Mark S. Melnikov and Joan Verdera, A geometric proof of the $L^2$ boundedness of the Cauchy integral on Lipschitz graphs, Internat. Math. Res. Notices 7 (1995), 325–331. MR 1350687, DOI 10.1155/S1073792895000249
- Fedor Nazarov, Xavier Tolsa, and Alexander Volberg, On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math. 213 (2014), no. 2, 237–321. MR 3286036, DOI 10.1007/s11511-014-0120-7
- Kate Okikiolu, Characterization of subsets of rectifiable curves in $\textbf {R}^n$, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348. MR 1182488, DOI 10.1112/jlms/s2-46.2.336
- Hervé Pajot, Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, Lecture Notes in Mathematics, vol. 1799, Springer-Verlag, Berlin, 2002. MR 1952175
- David Preiss, Geometry of measures in $\textbf {R}^n$: distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537–643. MR 890162, DOI 10.2307/1971410
- D. Preiss, X. Tolsa, and T. Toro, On the smoothness of Hölder doubling measures, Calc. Var. Partial Differential Equations 35 (2009), no. 3, 339–363. MR 2481829, DOI 10.1007/s00526-008-0208-z
- Xavier Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), no. 1, 105–149. MR 1982794, DOI 10.1007/BF02393237
- Xavier Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. of Math. (2) 162 (2005), no. 3, 1243–1304. MR 2179730, DOI 10.4007/annals.2005.162.1243
- Xavier Tolsa, Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality, Proc. Lond. Math. Soc. (3) 98 (2009), no. 2, 393–426. MR 2481953, DOI 10.1112/plms/pdn035
- Xavier Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory, Progress in Mathematics, vol. 307, Birkhäuser/Springer, Cham, 2014. MR 3154530
- Xavier Tolsa and Tatiana Toro, Rectifiability via a square function and Preiss’ theorem, Int. Math. Res. Not. IMRN 13 (2015), 4638–4662. MR 3439088, DOI 10.1093/imrn/rnu082