
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach
About this Title
Isabel Averill, Department of Mathematics, Bryn Mawr College, King-Yeung Lam, Department of Mathematics, Ohio State University and Yuan Lou, Institute for Mathematical Sciences, Renmin University of China and Department of Mathematics, Ohio State University
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 245, Number 1161
ISBNs: 978-1-4704-2202-8 (print); 978-1-4704-3611-7 (online)
DOI: https://doi.org/10.1090/memo/1161
Published electronically: July 26, 2016
Keywords: Reaction-diffusion,
advection,
evolution of dispersal,
principal eigenvalue,
global bifurcation
MSC: Primary 35J57, 35B32, 92D25
Table of Contents
Chapters
- 1. Introduction: The role of advection
- 2. Summary of main results
- 3. Preliminaries
- 4. Coexistence and classification of $\mu$-$\nu$ plane
- 5. Results in $\mathcal {R}_1$: Proof of Theorem
- 6. Results in $\mathcal {R}_2$: Proof of Theorem 2.11
- 7. Results in $\mathcal {R}_3$: Proof of Theorem
- 8. Summary of asymptotic behaviors of $\eta _*$ and $\eta ^*$
- 9. Structure of positive steady states via Lyapunov-Schmidt procedure
- 10. Non-convex domains
- 11. Global bifurcation results
- 12. Discussion and future directions
- A. Asymptotic behavior of $\tilde {u}$ and $\lambda _u$
- B. Limit eigenvalue problems as $\mu ,\nu \to 0$
- C. Limiting eigenvalue problem as $\mu \to \infty$
Abstract
The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work we consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates we consider the bifurcation diagram of positive steady states by using the advection rate as the bifurcation parameter. This approach enables us to capture the change of dynamics from weak advection to strong advection. We will determine three different types of bifurcation diagrams, depending on the difference of diffusion rates. Some exact multiplicity results about bifurcation points will also be presented. Our results can unify some previous work and, as a case study about the role of advection, also contribute to our understanding of intermediate (relative to diffusion) advection in reaction-diffusion models.- Lee Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proc. Natl. Acad. Sci. USA 109 (2012), no. 10, 3705–3710. MR 2903373, DOI 10.1073/pnas.1113833109
- Isabel E. Averill, The effect of intermediate advection on two competing species, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–The Ohio State University. MR 3004385
- Isabel Averill, Daniel Munther and Yuan Lou, On several conjectures from evolution of dispersal, J. Biol. Dyn. 6 (2012), 117–130, DOI 10.1080/17513758.2010.529169.
- Henri Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, In: Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569, Henri Berestycki and Y. Pomeau eds, Kluwer, Doordrecht, 2003, DOI 10.1007/978-94-010-0307-0_2.
- H. Berestycki, O. Diekmann, C. J. Nagelkerke, and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol. 71 (2009), no. 2, 399–429. MR 2471053, DOI 10.1007/s11538-008-9367-5
- Henri Berestycki, François Hamel, Reaction-Diffusion Equations and Propagation Phenomena, Applied Mathematical Sciences, Springer Verlag, 2017.
- Henri Berestycki, François Hamel, and Nikolai Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), no. 2, 451–480. MR 2140256, DOI 10.1007/s00220-004-1201-9
- Andriy Bezuglyy and Yuan Lou, Reaction-diffusion models with large advection coefficients, Appl. Anal. 89 (2010), no. 7, 983–1004. MR 2674939, DOI 10.1080/00036810903479723
- Fethi Belgacem, Elliptic boundary value problems with indefinite weights: variational formulations of the principal eigenvalue and applications, Pitman Research Notes in Mathematics Series, vol. 368, Longman, Harlow, 1997. MR 1478921
- Fethi Belgacem and Chris Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments, Canad. Appl. Math. Quart. 3 (1995), no. 4, 379–397. MR 1372792
- Santiago Cano-Casanova and Julián López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations 178 (2002), no. 1, 123–211. MR 1878528, DOI 10.1006/jdeq.2000.4003
- Robert Stephen Cantrell and Chris Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. MR 2191264
- Robert Stephen Cantrell, Chris Cosner, and Yuan Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci. 204 (2006), no. 2, 199–214. MR 2290095, DOI 10.1016/j.mbs.2006.09.003
- Robert Stephen Cantrell, Chris Cosner, and Yuan Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 497–518. MR 2332679, DOI 10.1017/S0308210506000047
- Robert Stephen Cantrell, Chris Cosner, and Yuan Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations 245 (2008), no. 12, 3687–3703. MR 2462700, DOI 10.1016/j.jde.2008.07.024
- Robert S. Cantrell, Chris Cosner and Yuan Lou, Evolution of dispersal in heterogeneous landscape, Spatial Ecology, Mathematical and Computational Biology Series, R.S. Cantrell, C. Cosner and S. Ruan, eds, Chapman Hall/CRC Press, Boca Raton, FL, 2009, 213–229, DOI 10.1201/9781420059861.ch11.
- Robert Stephen Cantrell, Chris Cosner, and Yuan Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng. 7 (2010), no. 1, 17–36. MR 2654278, DOI 10.3934/mbe.2010.7.17
- Robert Stephen Cantrell, Chris Cosner, Yuan Lou, and Chao Xie, Random dispersal versus fitness-dependent dispersal, J. Differential Equations 254 (2013), no. 7, 2905–2941. MR 3017035, DOI 10.1016/j.jde.2013.01.012
- Robert S. Cantrell, Chris Cosner and Salomé Martinéz, private communication.
- Richard G. Casten and Charles J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 (1978), no. 2, 266–273. MR 480282, DOI 10.1016/0022-0396(78)90033-5
- Xinfu Chen, private communication, 2012.
- Xinfu Chen, Richard Hambrock, and Yuan Lou, Evolution of conditional dispersal: a reaction-diffusion-advection model, J. Math. Biol. 57 (2008), no. 3, 361–386. MR 2411225, DOI 10.1007/s00285-008-0166-2
- Xinfu Chen, King-Yeung Lam, and Yuan Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst. 32 (2012), no. 11, 3841–3859. MR 2945810, DOI 10.3934/dcds.2012.32.3841
- Xinfu Chen and Yuan Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J. 57 (2008), no. 2, 627–658. MR 2414330, DOI 10.1512/iumj.2008.57.3204
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- Chris Cosner, A dynamic model for the ideal-free distribution as a partial differential equation, Theor. Pop. Biol. 67 (2005), 101–108, DOI 10.1016/j.tpb.2004.09.002.
- Chris Cosner and Yuan Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl. 277 (2003), no. 2, 489–503. MR 1961241, DOI 10.1016/S0022-247X(02)00575-9
- Chris Cosner and Michael Winkler, Well-posedness and qualitative properties of a dynamical model for the ideal free distribution, J. Math. Biol. 69 (2014), no. 6-7, 1343–1382. MR 3275199, DOI 10.1007/s00285-013-0733-z
- Eunjoo Cho and Yong-Jung Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol. 75 (2013), no. 5, 845–870. MR 3050058, DOI 10.1007/s11538-013-9838-1
- E. N. Dancer, Positivity of maps and applications, Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser Boston, Boston, MA, 1995, pp. 303–340. MR 1322326
- Jack Dockery, Vivian Hutson, Konstantin Mischaikow, and Mark Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol. 37 (1998), no. 1, 61–83. MR 1636644, DOI 10.1007/s002850050120
- Yihong Du and Sze-Bi Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton. I. Existence, SIAM J. Math. Anal. 40 (2008), no. 4, 1419–1440. MR 2466162, DOI 10.1137/07070663X
- Yihong Du and Sze-Bi Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton. II. Limiting profile, SIAM J. Math. Anal. 40 (2008), no. 4, 1441–1470. MR 2466163, DOI 10.1137/070706641
- Yihong Du and Sze-Bi Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal. 42 (2010), no. 3, 1305–1333. MR 2653252, DOI 10.1137/090775105
- Ute Ebert, Manuel Arrayas, Nico Temme, Ben Sommeojer, Jef Huisman, Critical conditions for phytoplankton blooms, Bull. Math. Biol. 63 (2001), 1095–1124, DOI 10.1006/bulm.2001.0261.
- Mohammad El Smaily and Stéphane Kirsch, The speed of propagation for KPP reaction-diffusion equations within large drift, Adv. Differential Equations 16 (2011), no. 3-4, 361–400. MR 2767082
- Albert Fannjiang and George Papanicolaou, Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54 (1994), no. 2, 333–408. MR 1265233, DOI 10.1137/S0036139992236785
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Richard Gejji, Yuan Lou, Daniel Munther, and Justin Peyton, Evolutionary convergence to ideal free dispersal strategies and coexistence, Bull. Math. Biol. 74 (2012), no. 2, 257–299. MR 2881462, DOI 10.1007/s11538-011-9662-4
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- R. Hambrock and Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol. 71 (2009), no. 8, 1793–1817. MR 2551690, DOI 10.1007/s11538-009-9425-7
- François Hamel and Andrej Zlatoš, Speed-up of combustion fronts in shear flows, Math. Ann. 356 (2013), no. 3, 845–867. MR 3063899, DOI 10.1007/s00208-012-0877-y
- Alan Hastings, Can spatial variation alone lead to selection for dispersal?, Theo. Pop. Biol. 24 (1983), 244–251, DOI 10.1016/0040-5809(83)90027-8.
- Xiaoqing He and Wei-Ming Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations 254 (2013), no. 2, 528–546. MR 2990042, DOI 10.1016/j.jde.2012.08.032
- Xiaoqing He and Wei-Ming Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations 254 (2013), no. 10, 4088–4108. MR 3032297, DOI 10.1016/j.jde.2013.02.009
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Peter Hess, Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, vol. 247, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. MR 1100011
- Jef Huisman, Manuel Arrayas, Ute Ebert, and Ben Sommeijer, How do sinking phytoplankton species manage to persist?, Am. Nat. 159 (2002), 245–254, DOI 10.1086/338511.
- Jef Huisman, Nguyêt N. Pham Thi, David M. Karl, Ben Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll maximum, Nature 439 (2006), 322–325, DOI 10.1038/nature04245.
- Sze-Bi Hsu and Yuan Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math. 70 (2010), no. 8, 2942–2974. MR 2735111, DOI 10.1137/100782358
- S. B. Hsu, H. L. Smith, and Paul Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4083–4094. MR 1373638, DOI 10.1090/S0002-9947-96-01724-2
- V. Hutson, Y. Lou, and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations 211 (2005), no. 1, 135–161. MR 2121111, DOI 10.1016/j.jde.2004.06.003
- V. Hutson, J. López-Gómez, K. Mischaikow, and G. Vickers, Limit behaviour for a competing species problem with diffusion, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 343–358. MR 1372970, DOI 10.1142/9789812796417_{0}022
- V. Hutson, K. Mischaikow, and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol. 43 (2001), no. 6, 501–533. MR 1874400, DOI 10.1007/s002850100106
- Hitoshi Ishii and Izumi Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, J. Math. Biol. 16 (1982/83), no. 1, 1–24. MR 693369, DOI 10.1007/BF00275157
- Chiu-Yen Kao, Yuan Lou, and Wenxian Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 6, 2047–2072. MR 2924452, DOI 10.3934/dcdsb.2012.17.2047
- Alexander Kiselev and Leonid Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 3, 309–358 (English, with English and French summaries). MR 1831659, DOI 10.1016/S0294-1449(01)00068-3
- Theodore Kolokolnikov, Chunhua Ou, and Yuan Yuan, Phytoplankton depth profiles and their transitions near the critical sinking velocity, J. Math. Biol. 59 (2009), no. 1, 105–122. MR 2501474, DOI 10.1007/s00285-008-0221-z
- L. Korobenko and E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations, J. Math. Biol. 69 (2014), no. 5, 1181–1206. MR 3268342, DOI 10.1007/s00285-013-0729-8
- Yong-Jung Kim, Ohsang Kwon, and Fang Li, Evolution of dispersal toward fitness, Bull. Math. Biol. 75 (2013), no. 12, 2474–2498. MR 3128024, DOI 10.1007/s11538-013-9904-8
- Yong-Jung Kim, Ohsang Kwon, and Fang Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol. 68 (2014), no. 6, 1341–1370. MR 3189110, DOI 10.1007/s00285-013-0674-6
- King-Yeung Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations 250 (2011), no. 1, 161–181. MR 2737838, DOI 10.1016/j.jde.2010.08.028
- King-Yeung Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal. 44 (2012), no. 3, 1808–1830. MR 2982732, DOI 10.1137/100819758
- King-Yeung Lam and Yuan Lou, Evolution of conditional dispersal: evolutionarily stable strategies in spatial models, J. Math. Biol. 68 (2014), no. 4, 851–877. MR 3169066, DOI 10.1007/s00285-013-0650-1
- King-Yeung Lam and Yuan Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol. 76 (2014), no. 2, 261–291. MR 3165580, DOI 10.1007/s11538-013-9901-y
- King-Yeung Lam, Yuan Lou and Frithjof Lutscher Evolution of dispersal in closed advective environments, J. Biol. Dyn. (2014), DOI 10.1080/17513758.2014.969336.
- King-Yeung Lam and Daniel Munther, Invading the ideal free distribution, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), 3219–3244, DOI 10.3934/dcdsb.2014.19.3219.
- King-Yeung Lam and Daniel Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1153–1159. MR 3447668, DOI 10.1090/S0002-9939-2015-12768-2
- King-Yeung Lam and Wei-Ming Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1051–1067. MR 2644778, DOI 10.3934/dcds.2010.28.1051
- King-Yeung Lam and Wei-Ming Ni, Advection-mediated competition in general environments, J. Differential Equations 257 (2014), no. 9, 3466–3500. MR 3258144, DOI 10.1016/j.jde.2014.06.019
- Julián López-Gómez, Spectral theory and nonlinear functional analysis, Chapman & Hall/CRC Research Notes in Mathematics, vol. 426, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1823860
- Yuan Lou and Frithjof Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol. 69 (2014), no. 6-7, 1319–1342. MR 3275198, DOI 10.1007/s00285-013-0730-2
- Yuan Lou and Wei-Ming Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79–131. MR 1415047, DOI 10.1006/jdeq.1996.0157
- Yuan Lou, Youshan Tao, and Michael Winkler, Approaching the ideal free distribution in two-species competition models with fitness-dependent dispersal, SIAM J. Math. Anal. 46 (2014), no. 2, 1228–1262. MR 3179554, DOI 10.1137/130934246
- Frithjof Lutscher, Mark A. Lewis, and Edward McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol. 68 (2006), no. 8, 2129–2160. MR 2293837, DOI 10.1007/s11538-006-9100-1
- Frithjof Lutscher, Edward McCauley and Mark A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Pop. Biol. 71 (2007), 267–277, DOI 10.1016/j.tpb.2006.11.006.
- Hiroshi Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 645–673. MR 731522
- Mark A. McPeek and Robert D. Holt, The evolution of dispersal in spatially and temporally varying environments, Am. Nat. 140 (1992), 1010–1027, DOI 10.1086/285453.
- Linfeng Mei and Xiaoyan Zhang, Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics, J. Differential Equations 253 (2012), no. 7, 2025–2063. MR 2946963, DOI 10.1016/j.jde.2012.06.011
- J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol. 18 (1983), no. 2, 169–184. MR 723586, DOI 10.1007/BF00280665
- Wei-Ming Ni, The Mathematics of Diffusion, CBMS Reg. Conf. Ser. Appl. Math. 82, SIAM, Philadelphia, 2011, DOI 10.1137/1.9781611971972. MR2866937
- Olga Vasilyeva and Frithjof Lutscher, Population dynamics in rivers: analysis of steady states, Can. Appl. Math. Q. 18 (2010), no. 4, 439–469. MR 2858148
- Olga Vasilyeva and Frithjof Lutscher, Competition of three species in an advective environment, Nonlinear Anal. Real World Appl. 13 (2012), no. 4, 1730–1748. MR 2891005, DOI 10.1016/j.nonrwa.2011.12.004
- Olga Vasilyeva and Frithjof Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol. 74 (2012), no. 12, 2935–2958. MR 3000734, DOI 10.1007/s11538-012-9792-3
- Akira Okubo and Simon A. Levin, Diffusion and ecological problems: modern perspectives, 2nd ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001. MR 1895041
- Elizaveta Pachepsky, Frithjof Lutscher, Roger Nisbet, Mark A. Lewis, Persistence, spread and the drift paradox, Theo. Pop. Biol. 67 (2005), 61–73, DOI 10.1016/j.tpb.2004.09.001.
- Jacobo Pejsachowicz and Patrick J. Rabier, Degree theory for $C^1$ Fredholm mappings of index $0$, J. Anal. Math. 76 (1998), 289–319. MR 1676979, DOI 10.1007/BF02786939
- A. B. Potapov and M. A. Lewis, Climate and competition: the effect of moving range boundaries on habitat invasibility, Bull. Math. Biol. 66 (2004), no. 5, 975–1008. MR 2253814, DOI 10.1016/j.bulm.2003.10.010
- Alex B. Potapov, Ulrike E. Schlägel and Mark A. Lewis, Evolutionarily stable diffusive dispersal, Discrete Contin. Dyn. Syst. Ser. B \text{19} (2014), 3319–3340, DOI dcdsb.2014.19.3319.
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. MR 1013117
- Lenya Ryzhik and Andrej Zlatoš, KPP pulsating front speed-up by flows, Commun. Math. Sci. 5 (2007), no. 3, 575–593. MR 2352332
- Junping Shi and Xuefeng Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations 246 (2009), no. 7, 2788–2812. MR 2503022, DOI 10.1016/j.jde.2008.09.009
- Nanako Shigesada and Kohkichi Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997, DOI 10.5860/choice.35-3840.
- Nanako Shigesada and Akira Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol. 12 (1981), no. 3, 311–326. MR 632148, DOI 10.1007/BF00276919
- Hal L. Smith, Monotone dynamical systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995. An introduction to the theory of competitive and cooperative systems. MR 1319817
- Douglas C. Speirs and William S.C. Gurney, Population persistence in rivers and estuaries, Ecology 82 (2001), 1219–1237. DOI 10.2307/2679984.
- Guido Sweers, Strong positivity in $C(\overline \Omega )$ for elliptic systems, Math. Z. 209 (1992), no. 2, 251–271. MR 1147817, DOI 10.1007/BF02570833
- Jack Xin, Front propagation in heterogeneous media, SIAM Rev. 42 (2000), no. 2, 161–230. MR 1778352, DOI 10.1137/S0036144599364296
- Kohei Yoshiyama, Jarad P. Mellard, Elena Litchman and Christopher A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, Am. Nat. 174(2) (2009), 190–203, DOI 10.1086/600113.
- Andrej Zlatoš, Reaction-diffusion front speed enhancement by flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 5, 711–726. MR 2838397, DOI 10.1016/j.anihpc.2011.05.004