
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Semicrossed products of operator algebras by semigroups
About this Title
Kenneth R. Davidson, Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L–3G1, Canada, Adam H. Fuller, Mathematics Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0130 and Evgenios T. A. Kakariadis, Previous: Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L–3G1, Canada \phantom{oo} Previous: Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel \phantom{oo} Current: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 247, Number 1168
ISBNs: 978-1-4704-2309-4 (print); 978-1-4704-3697-1 (online)
DOI: https://doi.org/10.1090/memo/1168
Published electronically: December 21, 2016
Keywords: Dynamical systems of operator algebras,
semicrossed products,
C*-envelope,
C*-crossed products.
MSC: Primary 47A20, 47L25, 47L65, 46L07
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. Semicrossed products by abelian semigroups
- 4. Nica-covariant semicrosssed products
- 5. Semicrossed products by non-abelian semigroups
Abstract
We examine the semicrossed products of a semigroup action by $*$-endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. We seek quite general conditions which will allow us to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action.
Our analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.
In particular, we show that the C*-envelope of the semicrossed product of C*-dynamical systems by doubly commuting representations of $\mathbb {Z}^n_+$ (by generally non-injective endomorphisms) is the full corner of a C*-crossed product. In consequence we connect the ideal structure of C*-covers to properties of the actions. In particular, when the system is classical, we show that the C*-envelope is simple if and only if the action is injective and minimal.
The dilation methods that we use may be applied to non-abelian semigroups. We identify the C*-envelope for actions of the free semigroup $\mathbb {F}_+^n$ by automorphisms in a concrete way, and for injective systems in a more abstract manner. We also deal with C*-dynamical systems over Ore semigroups when the appropriate covariance relation is considered.
- Jim Agler, An abstract approach to model theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 1–23. MR 976842
- Mohamed Ridha Alaimia and Justin R. Peters, Semicrossed products generated by two commuting automorphisms, J. Math. Anal. Appl. 285 (2003), no. 1, 128–140. MR 2000144, DOI 10.1016/S0022-247X(03)00369-X
- T. Andô, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88–90. MR 155193
- R. J. Archbold and J. S. Spielberg, Topologically free actions and ideals in discrete $C^*$-dynamical systems, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 1, 119–124. MR 1258035, DOI 10.1017/S0013091500018733
- Scott Armstrong, Ken Dykema, Ruy Exel, and Hanfeng Li, On embeddings of full amalgamated free product $C^*$-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 7, 2019–2030. MR 2053974, DOI 10.1090/S0002-9939-04-07370-8
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William B. Arveson, Notes on the unique extension property, preprint 2006, http://math.berkeley.edu/arveson/Dvi/unExt.pdf.
- William Arveson, The noncommutative Choquet boundary, J. Amer. Math. Soc. 21 (2008), no. 4, 1065–1084. MR 2425180, DOI 10.1090/S0894-0347-07-00570-X
- William Arveson, The noncommutative Choquet boundary II: hyperrigidity, Israel J. Math. 184 (2011), 349–385. MR 2823981, DOI 10.1007/s11856-011-0071-z
- William B. Arveson and Keith B. Josephson, Operator algebras and measure preserving automorphisms. II, J. Functional Analysis 4 (1969), 100–134. MR 0250081, DOI 10.1016/0022-1236(69)90025-1
- Bruce E. Blackadar, Weak expectations and nuclear $C^{\ast }$-algebras, Indiana Univ. Math. J. 27 (1978), no. 6, 1021–1026. MR 511256, DOI 10.1512/iumj.1978.27.27070
- Bruce Blackadar, Shape theory for $C^\ast$-algebras, Math. Scand. 56 (1985), no. 2, 249–275. MR 813640, DOI 10.7146/math.scand.a-12100
- David P. Blecher and Louis E. Labuschagne, Logmodularity and isometries of operator algebras, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1621–1646. MR 1946408, DOI 10.1090/S0002-9947-02-03195-1
- David P. Blecher and Christian Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR 2111973
- David P. Blecher and Vern I. Paulsen, Explicit construction of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112 (1991), no. 3, 839–850. MR 1049839, DOI 10.1090/S0002-9939-1991-1049839-7
- Nathan Brownlowe and Iain Raeburn, Exel’s crossed product and relative Cuntz-Pimsner algebras, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 3, 497–508. MR 2281412, DOI 10.1017/S030500410600956X
- Nathan Brownlowe, Iain Raeburn, and Sean T. Vittadello, Exel’s crossed product for non-unital $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 3, 423–444. MR 2726727, DOI 10.1017/S030500411000037X
- Dale R. Buske, Hilbert modules over a class of semicrossed products, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1721–1726. MR 1814102, DOI 10.1090/S0002-9939-00-05691-4
- Dale R. Buske and Justin R. Peters, Semicrossed products of the disk algebra: contractive representations and maximal ideals, Pacific J. Math. 185 (1998), no. 1, 97–113. MR 1653200, DOI 10.2140/pjm.1998.185.97
- V. Capraro, A survey of Connes’ embedding problem, preprint 2010, arXiv:1003.2076.
- Toke M. Carlsen, Nadia S. Larsen, Aidan Sims, and Sean T. Vittadello, Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems, Proc. Lond. Math. Soc. (3) 103 (2011), no. 4, 563–600. MR 2837016, DOI 10.1112/plms/pdq028
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Gunther Cornelissen, Curves, dynamical systems, and weighted point counting, Proc. Natl. Acad. Sci. USA 110 (2013), no. 24, 9669–9673. MR 3082271, DOI 10.1073/pnas.1217710110
- G. Cornelissen and M. Marcolli, Quantum statistical mechanics, L-series and anabelian geometry, arXiv:math.NT/1009.0736
- Gunther Cornelissen and Matilde Marcolli, Graph reconstruction and quantum statistical mechanics, J. Geom. Phys. 72 (2013), 110–117. MR 3073902, DOI 10.1016/j.geomphys.2013.03.021
- Joachim Cuntz, $K$-theory for certain $C^{\ast }$-algebras. II, J. Operator Theory 5 (1981), no. 1, 101–108. MR 613050
- Michael R. Darnel, Theory of lattice-ordered groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 187, Marcel Dekker, Inc., New York, 1995. MR 1304052
- Kenneth R. Davidson and Evgenios T. A. Kakariadis, Conjugate dynamical systems on $\textrm {C}^\ast$-algebras, Int. Math. Res. Not. IMRN 5 (2014), 1289–1311. MR 3178599, DOI 10.1093/imrn/rns253
- Kenneth R. Davidson and Elias G. Katsoulis, Isomorphisms between topological conjugacy algebras, J. Reine Angew. Math. 621 (2008), 29–51. MR 2431249, DOI 10.1515/CRELLE.2008.057
- Kenneth R. Davidson and Elias G. Katsoulis, Dilating covariant representations of the non-commutative disc algebras, J. Funct. Anal. 259 (2010), no. 4, 817–831. MR 2652172, DOI 10.1016/j.jfa.2010.04.005
- Kenneth R. Davidson and Elias G. Katsoulis, Operator algebras for multivariable dynamics, Mem. Amer. Math. Soc. 209 (2011), no. 982, viii+53. MR 2752983, DOI 10.1090/S0065-9266-10-00615-0
- Kenneth R. Davidson and Elias G. Katsoulis, Dilation theory, commutant lifting and semicrossed products, Doc. Math. 16 (2011), 781–868. MR 2861393
- Kenneth R. Davidson and Elias G. Katsoulis, Semicrossed products of the disk algebra, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3479–3484. MR 2929016, DOI 10.1090/S0002-9939-2012-11348-6
- Kenneth R. Davidson and Matthew Kennedy, The Choquet boundary of an operator system, Duke Math. J. 164 (2015), no. 15, 2989–3004. MR 3430455, DOI 10.1215/00127094-3165004
- Kenneth R. Davidson, Stephen C. Power, and Dilian Yang, Dilation theory for rank 2 graph algebras, J. Operator Theory 63 (2010), no. 2, 245–270. MR 2651911
- Kenneth R. Davidson and Jean Roydor, $C^\ast$-envelopes of tensor algebras for multivariable dynamics, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 2, 333–351. MR 2653236, DOI 10.1017/S0013091508001193
- Valentin Deaconu, Alex Kumjian, David Pask, and Aidan Sims, Graphs of $C^\ast$-correspondences and Fell bundles, Indiana Univ. Math. J. 59 (2010), no. 5, 1687–1735. MR 2865427, DOI 10.1512/iumj.2010.59.3893
- Luz M. DeAlba and Justin Peters, Classification of semicrossed products of finite-dimensional $C^\ast$-algebras, Proc. Amer. Math. Soc. 95 (1985), no. 4, 557–564. MR 810163, DOI 10.1090/S0002-9939-1985-0810163-3
- Jacques Dixmier, $C^*$-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. MR 0458185
- Allan P. Donsig, Aristides Katavolos, and Antonios Manoussos, The Jacobson radical for analytic crossed products, J. Funct. Anal. 187 (2001), no. 1, 129–145. MR 1867344, DOI 10.1006/jfan.2001.3819
- Michael A. Dritschel and Scott A. McCullough, Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory 53 (2005), no. 1, 159–167. MR 2132691
- Paul Dubreil, Sur les problèmes d’immersion et la théorie des modules, C. R. Acad. Sci. Paris 216 (1943), 625–627 (French). MR 9405
- Benton L. Duncan, $C^*$-envelopes of universal free products and semicrossed products for multivariable dynamics, Indiana Univ. Math. J. 57 (2008), no. 4, 1781–1788. MR 2440881, DOI 10.1512/iumj.2008.57.3273
- Benton L. Duncan and Justin R. Peters, Operator algebras and representations from commuting semigroup actions, J. Operator Theory 74 (2015), no. 1, 23–43. MR 3383612, DOI 10.7900/jot.2014apr16.2027
- Ruy Exel, A new look at the crossed-product of a $C^*$-algebra by an endomorphism, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1733–1750. MR 2032486, DOI 10.1017/S0143385702001797
- R. Exel and J. Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic Theory Dynam. Systems 27 (2007), no. 6, 1737–1771. MR 2371594, DOI 10.1017/S0143385707000193
- Neal J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math. 204 (2002), no. 2, 335–375. MR 1907896, DOI 10.2140/pjm.2002.204.335
- Neal J. Fowler, Paul S. Muhly, and Iain Raeburn, Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52 (2003), no. 3, 569–605. MR 1986889, DOI 10.1512/iumj.2003.52.2125
- Neal J. Fowler and Iain Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48 (1999), no. 1, 155–181. MR 1722197, DOI 10.1512/iumj.1999.48.1639
- Adam Hanley Fuller, Nonself-adjoint semicrossed products by abelian semigroups, Canad. J. Math. 65 (2013), no. 4, 768–782. MR 3071079, DOI 10.4153/CJM-2012-051-8
- K. R. Goodearl, Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs, vol. 20, American Mathematical Society, Providence, RI, 1986. MR 845783
- Donald W. Hadwin and Thomas B. Hoover, Operator algebras and the conjugacy of transformations, J. Funct. Anal. 77 (1988), no. 1, 112–122. MR 930394, DOI 10.1016/0022-1236(88)90080-8
- Masamichi Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 773–785. MR 566081, DOI 10.2977/prims/1195187876
- Astrid an Huef and Iain Raeburn, Stacey crossed products associated to Exel systems, Integral Equations Operator Theory 72 (2012), no. 4, 537–561. MR 2904610, DOI 10.1007/s00020-012-1949-9
- E. T. A. Kakariadis, Semicrossed products of C*-algebras and their C*-envelopes, J. Analyse Math., to appear (arXiv:math.OA/1102.2252).
- Evgenios T. A. Kakariadis, The Šilov boundary for operator spaces, Integral Equations Operator Theory 76 (2013), no. 1, 25–38. MR 3041719, DOI 10.1007/s00020-013-2033-9
- Evgenios T. A. Kakariadis, The Dirichlet property for tensor algebras, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1119–1130. MR 3138481, DOI 10.1112/blms/bdt041
- Evgenios T. A. Kakariadis and Elias G. Katsoulis, Semicrossed products of operator algebras and their $\textrm {C}^*$-envelopes, J. Funct. Anal. 262 (2012), no. 7, 3108–3124. MR 2885949, DOI 10.1016/j.jfa.2012.01.002
- Evgenios T. A. Kakariadis and Elias G. Katsoulis, Contributions to the theory of $\mathrm {C}^*$-correspondences with applications to multivariable dynamics, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6605–6630. MR 2958949, DOI 10.1090/S0002-9947-2012-05627-3
- Evgenios T. A. Kakariadis and Elias G. Katsoulis, Isomorphism invariants for multivariable $\textrm {C}^\ast$-dynamics, J. Noncommut. Geom. 8 (2014), no. 3, 771–787. MR 3261601, DOI 10.4171/JNCG/170
- Evgenios T. A. Kakariadis and Justin R. Peters, Representations of $\rm C^*$-dynamical systems implemented by Cuntz families, Münster J. Math. 6 (2013), no. 2, 383–411. MR 3148217
- Elias G. Katsoulis and David W. Kribs, Tensor algebras of $C^*$-correspondences and their $C^*$-envelopes, J. Funct. Anal. 234 (2006), no. 1, 226–233. MR 2214146, DOI 10.1016/j.jfa.2005.12.013
- Takeshi Katsura, On $C^*$-algebras associated with $C^*$-correspondences, J. Funct. Anal. 217 (2004), no. 2, 366–401. MR 2102572, DOI 10.1016/j.jfa.2004.03.010
- Marcelo Laca, From endomorphisms to automorphisms and back: dilations and full corners, J. London Math. Soc. (2) 61 (2000), no. 3, 893–904. MR 1766113, DOI 10.1112/S0024610799008492
- Marcelo Laca and Iain Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996), no. 2, 415–440. MR 1402771, DOI 10.1006/jfan.1996.0091
- Michael P. Lamoureux, Nest representations and dynamical systems, J. Funct. Anal. 114 (1993), no. 2, 467–492. MR 1223711, DOI 10.1006/jfan.1993.1075
- Michael P. Lamoureux, Ideals in some continuous nonselfadjoint crossed product algebras, J. Funct. Anal. 142 (1996), no. 1, 211–248. MR 1419421, DOI 10.1006/jfan.1996.0148
- Nadia S. Larsen, Crossed products by abelian semigroups via transfer operators, Ergodic Theory Dynam. Systems 30 (2010), no. 4, 1147–1164. MR 2669415, DOI 10.1017/S0143385709000509
- Nadia S. Larsen and Xin Li, Dilations of semigroup crossed products as crossed products of dilations, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1597–1603. MR 3020847, DOI 10.1090/S0002-9939-2013-11475-9
- Kuen-Shan Ling and Paul S. Muhly, An automorphic form of Ando’s theorem, Integral Equations Operator Theory 12 (1989), no. 3, 424–434. MR 998282, DOI 10.1007/BF01235741
- Michael J. McAsey and Paul S. Muhly, Representations of nonselfadjoint crossed products, Proc. London Math. Soc. (3) 47 (1983), no. 1, 128–144. MR 698930, DOI 10.1112/plms/s3-47.1.128
- Michael McAsey, Paul S. Muhly, and Kichi-Suke Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), no. 2, 381–409. MR 522266, DOI 10.1090/S0002-9947-1979-0522266-3
- Ralf Meyer, Adjoining a unit to an operator algebra, J. Operator Theory 46 (2001), no. 2, 281–288. MR 1870408
- W. Mlak, Unitary dilations in case of ordered groups, Ann. Polon. Math. 17 (1966), 321–328. MR 190769, DOI 10.4064/ap-17-3-321-328
- Paul S. Muhly and Baruch Solel, Tensor algebras over $C^*$-correspondences: representations, dilations, and $C^*$-envelopes, J. Funct. Anal. 158 (1998), no. 2, 389–457. MR 1648483, DOI 10.1006/jfan.1998.3294
- Paul S. Muhly and Baruch Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. (3) 81 (2000), no. 1, 113–168. MR 1757049, DOI 10.1112/S0024611500012405
- Paul S. Muhly and Baruch Solel, Extensions and dilations for $C^*$-dynamical systems, Operator theory, operator algebras, and applications, Contemp. Math., vol. 414, Amer. Math. Soc., Providence, RI, 2006, pp. 375–381. MR 2277221, DOI 10.1090/conm/414/07823
- A. Nica, $C^*$-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), no. 1, 17–52. MR 1241114
- Tomoyoshi Ohwada and Kichi-Suke Saito, Factorization in analytic crossed products, J. Math. Soc. Japan 54 (2002), no. 1, 21–33. MR 1864926, DOI 10.2969/jmsj/1191593953
- Oystein Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (1931), no. 3, 463–477. MR 1503010, DOI 10.2307/1968245
- Stephen Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481–490. MR 268710
- Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
- Gert K. Pedersen, Pullback and pushout constructions in $C^*$-algebra theory, J. Funct. Anal. 167 (1999), no. 2, 243–344. MR 1716199, DOI 10.1006/jfan.1999.3456
- Justin Peters, Semicrossed products of $C^\ast$-algebras, J. Funct. Anal. 59 (1984), no. 3, 498–534. MR 769379, DOI 10.1016/0022-1236(84)90063-6
- Justin Peters, The ideal structure of certain nonselfadjoint operator algebras, Trans. Amer. Math. Soc. 305 (1988), no. 1, 333–352. MR 920162, DOI 10.1090/S0002-9947-1988-0920162-6
- Justin R. Peters, Semigroups of locally injective maps and transfer operators, Semigroup Forum 81 (2010), no. 2, 255–268. MR 2678714, DOI 10.1007/s00233-010-9219-0
- Michael V. Pimsner, A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\textbf {Z}$, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR 1426840
- Gelu Popescu, Non-commutative disc algebras and their representations, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2137–2148. MR 1343719, DOI 10.1090/S0002-9939-96-03514-9
- S. C. Power, Classification of analytic crossed product algebras, Bull. London Math. Soc. 24 (1992), no. 4, 368–372. MR 1165380, DOI 10.1112/blms/24.4.368
- Aidan Sims and Trent Yeend, $C^*$-algebras associated to product systems of Hilbert bimodules, J. Operator Theory 64 (2010), no. 2, 349–376. MR 2718947
- Baruch Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc. 279 (1983), no. 2, 825–840. MR 709586, DOI 10.1090/S0002-9947-1983-0709586-5
- Baruch Solel, Representations of product systems over semigroups and dilations of commuting CP maps, J. Funct. Anal. 235 (2006), no. 2, 593–618. MR 2225464, DOI 10.1016/j.jfa.2005.11.014
- Baruch Solel, Regular dilations of representations of product systems, Math. Proc. R. Ir. Acad. 108 (2008), no. 1, 89–110. MR 2457085, DOI 10.3318/PRIA.2008.108.1.89
- Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010. MR 2760647
- N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Functional Analysis 16 (1974), 83–100. MR 0355642, DOI 10.1016/0022-1236(74)90071-8