
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes
About this Title
Thierry Daudé, Laboratoire AGM, Département de Mathématiques, UMR CNRS 8088, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France and François Nicoleau, Laboratoire Jean Leray, UMR 6629, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 247, Number 1170
ISBNs: 978-1-4704-2376-6 (print); 978-1-4704-3701-5 (online)
DOI: https://doi.org/10.1090/memo/1170
Published electronically: December 28, 2016
Keywords: Inverse scattering,
black holes,
Dirac equation
MSC: Primary 81U40, 35P25; Secondary 58J50
Table of Contents
Chapters
- 1. Introduction
- 2. Kerr-Newman-de-Sitter black holes
- 3. The massless charged Dirac equation
- 4. The direct scattering problem
- 5. Uniqueness results in the inverse scattering problem at fixed energy
- 6. The angular equation and partial inverse result
- 7. The radial equation: complexification of the angular momentum
- 8. Large $z$ asymptotics of the scattering data
- 9. The inverse scattering problem
- A. Growth estimate of the eigenvalues $\mu _{kl}(\lambda )$
- B. Limiting Absorption Principles and scattering theory for $H_0$ and $H$
Abstract
In this paper, we study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, we establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. We also use the miraculous property (quoting Chandrasekhar) - that the Dirac equation can be separated into radial and angular ordinary differential equations - to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, we use this expression of the scattering matrix to study the uniqueness property in the associated inverse scattering problem at fixed energy. Using essentially the particular form of the angular equation (that can be solved explicitly by Frobenius method) and the Complex Angular Momentum technique on the radial equation, we are finally able to determine uniquely the metric of the black hole from the knowledge of the scattering matrix at a fixed energy.- Sarp Akcay and Richard A. Matzner, The Kerr-de Sitter universe, Classical Quantum Gravity 28 (2011), no. 8, 085012, 26. MR 2787111, DOI 10.1088/0264-9381/28/8/085012
- Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee, Direct and inverse scattering for selfadjoint Hamiltonian systems on the line, Integral Equations Operator Theory 38 (2000), no. 2, 129–171. MR 1791049, DOI 10.1007/BF01200121
- Werner O. Amrein, Anne Boutet de Monvel, and Vladimir Georgescu, $C_0$-groups, commutator methods and spectral theory of $N$-body Hamiltonians, Modern Birkhäuser Classics, Birkhäuser/Springer, Basel, 1996. [2013] reprint of the 1996 edition. MR 3136195
- L. Andersson and P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint (2009), arXiv:0908.2265.
- Alain Bachelot, Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential, J. Math. Pures Appl. (9) 83 (2004), no. 10, 1179–1239 (English, with English and French summaries). MR 2092306, DOI 10.1016/j.matpur.2004.03.007
- Davide Batic, Harald Schmid, and Monika Winklmeier, On the eigenvalues of the Chandrasekhar-Page angular equation, J. Math. Phys. 46 (2005), no. 1, 012504, 35. MR 2113763, DOI 10.1063/1.1818720
- F. Belgiorno and S. L. Cacciatori, Absence of normalizable time-periodic solutions for the Dirac equation in Kerr-Newman-De-Sitter black hole background, J. Phys. A, $\mathbf {42}$, (2009), 135207.
- Francesco Belgiorno and Sergio L. Cacciatori, The Dirac equation in Kerr-Newman-AdS black hole background, J. Math. Phys. 51 (2010), no. 3, 033517, 32. MR 2647896, DOI 10.1063/1.3300401
- Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. MR 0068627
- Jean-Marc Bouclet, Resolvent estimates for the Laplacian on asymptotically hyperbolic manifolds, Ann. Henri Poincaré 7 (2006), no. 3, 527–561. MR 2226747, DOI 10.1007/s00023-005-0259-z
- Anne Boutet de Monvel-Berthier, Dragos Manda, and Radu Purice, Limiting absorption principle for the Dirac operator, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), no. 4, 413–431 (English, with English and French summaries). MR 1241704
- K. Chadan and M. Musette, Inverse problems in the coupling constant for the Schrödinger equation, Inverse Problems 5 (1989), no. 3, 257–268. MR 999061
- K. Chadan, R. Kobayashi, and M. Musette, The inverse problem in the coupling constant for the Schrödinger equation. II, Inverse Problems 8 (1992), no. 1, 45–57. MR 1153126
- Thierry Daudé, Time-dependent scattering theory for charged Dirac fields on a Reissner-Nordström black hole, J. Math. Phys. 51 (2010), no. 10, 102504, 57. MR 2761305, DOI 10.1063/1.3499403
- T. Daudé, Time-dependent scattering theory for massive charged Dirac fields by a Kerr-Newman black hole, thèse de doctorat, Université Bordeaux 1, (2004), available online at http://tel.archives-ouvertes.fr.
- Thierry Daudé, Niky Kamran, and Francois Nicoleau, Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces, Inverse Problems 31 (2015), no. 12, 125009, 37. MR 3540316, DOI 10.1088/0266-5611/31/12/125009
- Thierry Daudé, Damien Gobin, and François Nicoleau, Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds, Inverse Probl. Imaging 10 (2016), no. 3, 659–688. MR 3562266, DOI 10.3934/ipi.2016016
- Thierry Daudé and François Nicoleau, Recovering the mass and the charge of a Reissner-Nordström black hole by an inverse scattering experiment, Inverse Problems 24 (2008), no. 2, 025017, 18. MR 2408554, DOI 10.1088/0266-5611/24/2/025017
- Thierry Daudé and François Nicoleau, Inverse scattering in de Sitter-Reissner-Nordström black hole spacetimes, Rev. Math. Phys. 22 (2010), no. 4, 431–484. MR 2647042, DOI 10.1142/S0129055X10004004
- Thierry Daudé and François Nicoleau, Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes, Ann. Henri Poincaré 12 (2011), no. 1, 1–47. MR 2770088, DOI 10.1007/s00023-010-0069-9
- Stephan De Bièvre, Peter D. Hislop, and I. M. Sigal, Scattering theory for the wave equation on noncompact manifolds, Rev. Math. Phys. 4 (1992), no. 4, 575–618. MR 1197551, DOI 10.1142/S0129055X92000236
- Francesco Demontis and Cornelis van der Mee, Scattering operators for matrix Zakharov-Shabat systems, Integral Equations Operator Theory 62 (2008), no. 4, 517–540. MR 2470122, DOI 10.1007/s00020-008-1640-3
- Jan Dereziński and Christian Gérard, Scattering theory of classical and quantum $N$-particle systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1459161
- F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, A rigorous treatment of energy extraction from a rotating black hole, Comm. Math. Phys. 287 (2009), no. 3, 829–847. MR 2486663, DOI 10.1007/s00220-009-0730-7
- Gerhard Freiling and Vjacheslav Yurko, Inverse problems for differential operators with singular boundary conditions, Math. Nachr. 278 (2005), no. 12-13, 1561–1578. MR 2169700, DOI 10.1002/mana.200410322
- Richard Froese and Peter Hislop, Spectral analysis of second-order elliptic operators on noncompact manifolds, Duke Math. J. 58 (1989), no. 1, 103–129. MR 1016416, DOI 10.1215/S0012-7094-89-05807-9
- Valeri P. Frolov and David Kubizňák, Higher-dimensional black holes: hidden symmetries and separation of variables, Classical Quantum Gravity 25 (2008), no. 15, 154005, 22. MR 2425893, DOI 10.1088/0264-9381/25/15/154005
- Damien Gobin, Inverse scattering at fixed energy for massive charged Dirac fields in de Sitter-Reissner-Nordström black holes, Inverse Problems 31 (2015), no. 5, 055001, 56. MR 3346142, DOI 10.1088/0266-5611/31/5/055001
- V. Georgescu and C. Gérard, On the virial theorem in quantum mechanics, Comm. Math. Phys. 208 (1999), no. 2, 275–281. MR 1729087, DOI 10.1007/s002200050758
- V. Georgescu, C. Gérard, and D. Häfner, Boundary values of resolvents of selfadjoint operators in Krein spaces, J. Funct. Anal. 265 (2013), no. 12, 3245–3304. MR 3110502, DOI 10.1016/j.jfa.2013.08.030
- V. Georgescu, C. Gérard, and D. Häfner, Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy, to appear in Journal of Spectral Theory (2014). Preprint arXiv:1303.4610
- V. Georgescu, C. Gérard, and D. Häfner, Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric, (2014), Preprint arXiv:1405.5304.
- V. Georgescu and M. Măntoiu, On the spectral theory of singular Dirac type Hamiltonians, J. Operator Theory 46 (2001), no. 2, 289–321. MR 1870409
- Dietrich Häfner and Jean-Philippe Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16 (2004), no. 1, 29–123. MR 2047861, DOI 10.1142/S0129055X04001911
- H. Isozaki and J. Kurylev, Spectral theory and inverse problems on asymptotically hyperbolic manifolds, preprint (2011), arXiv:1102.5382.
- Hiroshi Isozaki and Hitoshi Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo 35 (1986), no. 2, 81–107. MR 847881
- Arne Jensen and Shu Nakamura, Mapping properties of wave and scattering operators of two-body Schrödinger operators, Lett. Math. Phys. 24 (1992), no. 4, 295–305. MR 1172457, DOI 10.1007/BF00420489
- Mark S. Joshi and Antônio Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), no. 1, 41–86. MR 1756569, DOI 10.1007/BF02392781
- S. T. Kuroda, An introduction to scattering theory, Lecture Notes Series, vol. 51, Aarhus Universitet, Matematisk Institut, Aarhus, 1978. MR 528757
- N. Kamran and R. G. McLenaghan, Separation of variables and symmetry operators for the neutrino and Dirac equations in the space-times admitting a two-parameter abelian orthogonally transitive isometry group and a pair of shearfree geodesic null congruences, J. Math. Phys. 25 (1984), no. 4, 1019–1027. MR 739257, DOI 10.1063/1.526269
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Translated and edited by Richard A. Silverman. MR 0174795
- E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), no. 3, 391–408. MR 603501
- Roger G. Newton, Scattering theory of waves and particles, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, 1982. MR 666397
- A. G. Ramm, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys. 207 (1999), no. 1, 231–247. MR 1724847, DOI 10.1007/s002200050725
- T. Regge, Introduction to complex orbital momenta, Nuovo Cimento (10) 14 (1959), 951–976 (English, with Italian summary). MR 143532
- M. Rid and B. Saĭmon, Metody sovremennoĭ matematicheskoĭ fiziki. 1: Funktsional′nyĭ analiz, Izdat. “Mir”, Moscow, 1977 (Russian). Translated from the English by A. K. Pogrebkov and V. N. Suško; With a preface by N. N. Bogoljubov; Edited by M. K. Polivanov. MR 0493422
- Julien Royer, Limiting absorption principle for the dissipative Helmholtz equation, Comm. Partial Differential Equations 35 (2010), no. 8, 1458–1489. MR 2754051, DOI 10.1080/03605302.2010.490287
- Antônio Sá Barreto, Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005), no. 3, 407–480. MR 2169870, DOI 10.1215/S0012-7094-05-12931-3
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Hisao Suzuki, Eiichi Takasugi, and Hiroshi Umetsu, Perturbations of Kerr-de Sitter black holes and Heun’s equations, Progr. Theoret. Phys. 100 (1998), no. 3, 491–505. MR 1664413, DOI 10.1143/PTP.100.491
- Robert M. Wald, General relativity, University of Chicago Press, Chicago, IL, 1984. MR 757180
- Wolfgang Walter, Ordinary differential equations, Graduate Texts in Mathematics, vol. 182, Springer-Verlag, New York, 1998. Translated from the sixth German (1996) edition by Russell Thompson; Readings in Mathematics. MR 1629775
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320
- D. R. Yafaev, Mathematical scattering theory, Translations of Mathematical Monographs, vol. 105, American Mathematical Society, Providence, RI, 1992. General theory; Translated from the Russian by J. R. Schulenberger. MR 1180965