
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem
About this Title
Donatella Danielli, Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, Nicola Garofalo, Dipartimento d’Ingegneria Civile e Ambientale (DICEA), Università di Padova, via Trieste 63, 35131 Padova, Italy, Arshak Petrosyan, Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 and Tung To, Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 249, Number 1181
ISBNs: 978-1-4704-2547-0 (print); 978-1-4704-4129-6 (online)
DOI: https://doi.org/10.1090/memo/1181
Published electronically: August 8, 2017
Keywords: Free boundary problem,
parabolic Signorini problem,
evolutionary variational inequality,
Almgren’s frequency formula,
Caffarelli’s monotonicity formula,
Weiss’s monotonicity formula,
Monneau’s monotonicity formula,
optimal regularity,
regularity of free boundary,
singular set
MSC: Primary 35R35, 35K85
Table of Contents
Chapters
- 1. Introduction
- 2. Notation and preliminaries
- 3. Known existence and regularity results
- 4. Classes of solutions
- 5. Estimates in Gaussian spaces
- 6. The generalized frequency function
- 7. Existence and homogeneity of blowups
- 8. Homogeneous global solutions
- 9. Optimal regularity of solutions
- 10. Classification of free boundary points
- 11. Free boundary: Regular set
- 12. Free boundary: Singular set
- 13. Weiss and Monneau type monotonicity formulas
- 14. Structure of the singular set
- A. Estimates in Gaussian spaces: Proofs
- B. Parabolic Whitney’s extension theorem
Abstract
We give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren’s monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set.- Mark Allen, Erik Lindgren, and Arshak Petrosyan, The two-phase fractional obstacle problem, SIAM J. Math. Anal. 47 (2015), no. 3, 1879–1905. MR 3348118, DOI 10.1137/140974195
- Mark Allen and Wenhui Shi, The two-phase parabolic Signorini problem, Indiana Univ. Math. J. 65 (2016), no. 2, 727–742. MR 3498182, DOI 10.1512/iumj.2016.65.5824
- Frederick J. Almgren Jr., Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. $Q$-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR 1777737
- John Andersson, Optimal regularity and free boundary regularity for the Signorini problem, Algebra i Analiz 24 (2012), no. 3, 1–21; English transl., St. Petersburg Math. J. 24 (2013), no. 3, 371–386. MR 3014126, DOI 10.1090/S1061-0022-2013-01244-1
- A. A. Arkhipova and N. N. Ural′tseva, Regularity of the solution of a problem with a two-sided limit on a boundary for elliptic and parabolic equations, Trudy Mat. Inst. Steklov. 179 (1988), 5–22, 241 (Russian). Translated in Proc. Steklov Inst. Math. 1989, no. 2, 1–19; Boundary value problems of mathematical physics, 13 (Russian). MR 964910
- A. Arkhipova and N. Uraltseva, Sharp estimates for solutions of a parabolic Signorini problem, Math. Nachr. 177 (1996), 11–29. MR 1374941, DOI 10.1002/mana.19961770103
- Ioannis Athanasopoulous, Regularity of the solution of an evolution problem with inequalities on the boundary, Comm. Partial Differential Equations 7 (1982), no. 12, 1453–1465. MR 679950, DOI 10.1080/03605308208820258
- Ioannis Athanasopoulos, A temperature control problem, Internat. J. Math. Math. Sci. 7 (1984), no. 1, 113–116. MR 743830, DOI 10.1155/S0161171284000120
- Ioannis Athanasopoulos and Luis A. Caffarelli, A theorem of real analysis and its application to free boundary problems, Comm. Pure Appl. Math. 38 (1985), no. 5, 499–502. MR 803243, DOI 10.1002/cpa.3160380503
- I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 49–66, 226 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 132 (2006), no. 3, 274–284. MR 2120184, DOI 10.1007/s10958-005-0496-1
- I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math. 224 (2010), no. 1, 293–315. MR 2600998, DOI 10.1016/j.aim.2009.11.010
- I. Athanasopoulos, L. A. Caffarelli, and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), no. 2, 485–498. MR 2405165, DOI 10.1353/ajm.2008.0016
- Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168. MR 428137
- L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), no. 9, 1067–1075. MR 542512, DOI 10.1080/03605307908820119
- Luis A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., vol. 29, Masson, Paris, 1993, pp. 53–60. MR 1260438
- L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383–402. MR 1658612, DOI 10.1007/BF02498216
- Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math. 680 (2013), 191–233. MR 3100955, DOI 10.1515/crelle.2012.036
- Luis Caffarelli, Arshak Petrosyan, and Henrik Shahgholian, Regularity of a free boundary in parabolic potential theory, J. Amer. Math. Soc. 17 (2004), no. 4, 827–869. MR 2083469, DOI 10.1090/S0894-0347-04-00466-7
- Luis A. Caffarelli, Sandro Salsa, and Luis Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425–461. MR 2367025, DOI 10.1007/s00222-007-0086-6
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. MR 0521262
- Eugene B. Fabes, Nicola Garofalo, and Sandro Salsa, Comparison theorems for temperatures in noncylindrical domains, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 77 (1984), no. 1-2, 1–12 (1985) (English, with Italian summary). MR 884371
- Gaetano Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 7 (1963/64), 91–140 (Italian). MR 178631
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI 10.1512/iumj.1986.35.35015
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- Nicola Garofalo and Arshak Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 415–461. MR 2511747, DOI 10.1007/s00222-009-0188-4
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- Steve Hofmann, John L. Lewis, and Kaj Nyström, Caloric measure in parabolic flat domains, Duke Math. J. 122 (2004), no. 2, 281–346. MR 2053754, DOI 10.1215/S0012-7094-04-12222-5
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR 0241822
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184
- J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. MR 216344, DOI 10.1002/cpa.3160200302
- R. Monneau, On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal. 13 (2003), no. 2, 359–389. MR 1967031, DOI 10.1007/BF02930701
- R. Monneau, Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients, J. Fourier Anal. Appl. 15 (2009), no. 3, 279–335. MR 2511866, DOI 10.1007/s00041-009-9066-0
- Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of free boundaries in obstacle-type problems, Graduate Studies in Mathematics, vol. 136, American Mathematical Society, Providence, RI, 2012. MR 2962060
- Arshak Petrosyan and Wenhui Shi, Parabolic boundary Harnack principles in domains with thin Lipschitz complement, Anal. PDE 7 (2014), no. 6, 1421–1463. MR 3270169, DOI 10.2140/apde.2014.7.1421
- Chi-Cheung Poon, Unique continuation for parabolic equations, Comm. Partial Differential Equations 21 (1996), no. 3-4, 521–539. MR 1387458, DOI 10.1080/03605309608821195
- David Joseph Allyn Richardson, VARIATIONAL PROBLEMS WITH THIN OBSTACLES, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–The University of British Columbia (Canada). MR 2628343
- A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. e Appl. (5) 18 (1959), 95–139 (Italian). MR 118021
- Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67–112. MR 2270163, DOI 10.1002/cpa.20153
- N. N. Ural′tseva, Hölder continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type, Dokl. Akad. Nauk SSSR 280 (1985), no. 3, 563–565 (Russian). MR 775926
- Georg S. Weiss, A homogeneity improvement approach to the obstacle problem, Invent. Math. 138 (1999), no. 1, 23–50. MR 1714335, DOI 10.1007/s002220050340
- G. S. Weiss, Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems, SIAM J. Math. Anal. 30 (1999), no. 3, 623–644. MR 1677947, DOI 10.1137/S0036141097327409
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3