
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Property $(T)$ for Groups Graded by Root Systems
About this Title
Mikhail Ershov, University of Virginia, Andrei Jaikin-Zapirain, Departamento de Matemáticas Universidad Autónoma de Madrid – and – Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Martin Kassabov, Cornell University and University of Southampton
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 249, Number 1186
ISBNs: 978-1-4704-2604-0 (print); 978-1-4704-4139-5 (online)
DOI: https://doi.org/10.1090/memo/1186
Published electronically: August 9, 2017
Keywords: Property $(T)$,
gradings by root systems,
Steinberg groups,
Chevalley groups
MSC: Primary 22D10, 17B22; Secondary 17B70, 20E42
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. Generalized spectral criterion
- 4. Root Systems
- 5. Property $(T)$ for groups graded by root systems
- 6. Reductions of root systems
- 7. Steinberg groups over commutative rings
- 8. Twisted Steinberg groups
- 9. Application: Mother group with property $(T)$
- 10. Estimating relative Kazhdan constants
- A. Relative property $(T)$ for $({\mathrm {St}}_n(R)\ltimes R^n,R^n)$
Abstract
We introduce and study the class of groups graded by root systems. We prove that if $\Phi$ is an irreducible classical root system of rank $\geq 2$ and $G$ is a group graded by $\Phi$, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of $G$. As the main application of this theorem we prove that for any reduced irreducible classical root system $\Phi$ of rank $\geq 2$ and a finitely generated commutative ring $R$ with $1$, the Steinberg group ${\mathrm {St}}_{\Phi }(R)$ and the elementary Chevalley group $\mathbb E_{\Phi }(R)$ have property $(T)$. We also show that there exists a group with property $(T)$ which maps onto all finite simple groups of Lie type and rank $\geq 2$, thereby providing a “unified” proof of expansion in these groups.- A. Bak, The stable structure of quadratic modules, Thesis, Columbia University, 1969.
- Anthony Bak, $K$-theory of forms, Annals of Mathematics Studies, No. 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 632404
- C. Badea, S. Grivaux, and V. Müller, The rate of convergence in the method of alternating projections, Algebra i Analiz 23 (2011), no. 3, 1–30; English transl., St. Petersburg Math. J. 23 (2012), no. 3, 413–434. MR 2896163, DOI 10.1090/S1061-0022-2012-01202-1
- B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property $(T)$. New Math. Monogr. 11, Cambridge Univ. Press, Cambridge, 2008.
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629
- J. L. Brenner, Covering theorems for FINASIGs. VIII. Almost all conjugacy classes in ${\cal A}_{n}$ have exponent $\leq {}4$, J. Austral. Math. Soc. Ser. A 25 (1978), no. 2, 210–214. MR 480718, DOI 10.1017/s1446788700038799
- Emmanuel Breuillard, Ben Green, and Terence Tao, Suzuki groups as expanders, Groups Geom. Dyn. 5 (2011), no. 2, 281–299. MR 2782174, DOI 10.4171/GGD/128
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
- Yves de Cornulier, Relative Kazhdan property, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 301–333 (English, with English and French summaries). MR 2245534, DOI 10.1016/j.ansens.2005.12.006
- Jan Dymara and Tadeusz Januszkiewicz, Cohomology of buildings and their automorphism groups, Invent. Math. 150 (2002), no. 3, 579–627. MR 1946553, DOI 10.1007/s00222-002-0242-y
- Mikhail Ershov and Andrei Jaikin-Zapirain, Property (T) for noncommutative universal lattices, Invent. Math. 179 (2010), no. 2, 303–347. MR 2570119, DOI 10.1007/s00222-009-0218-2
- John R. Faulkner, Barbilian planes, Geom. Dedicata 30 (1989), no. 2, 125–181. MR 1000255, DOI 10.1007/BF00181549
- John R. Faulkner, Groups with Steinberg relations and coordinatization of polygonal geometries, Mem. Amer. Math. Soc. 10 (1977), no. 185, iii+135. MR 513804, DOI 10.1090/memo/0185
- Erik Guentner, Nigel Higson, and Shmuel Weinberger, The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 243–268. MR 2217050, DOI 10.1007/s10240-005-0030-5
- Fritz Grunewald, Jens Mennicke, and Leonid Vaserstein, On symplectic groups over polynomial rings, Math. Z. 206 (1991), no. 1, 35–56. MR 1086811, DOI 10.1007/BF02571323
- Uzy Hadad, Kazhdan constants of group extensions, Internat. J. Algebra Comput. 20 (2010), no. 5, 671–688. MR 2726569, DOI 10.1142/S0218196710005832
- Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302
- Shlomo Hoory, Nathan Linial, and Avi Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561. MR 2247919, DOI 10.1090/S0273-0979-06-01126-8
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773
- Martin Kassabov, Universal lattices and unbounded rank expanders, Invent. Math. 170 (2007), no. 2, 297–326. MR 2342638, DOI 10.1007/s00222-007-0064-z
- Martin Kassabov, Symmetric groups and expander graphs, Invent. Math. 170 (2007), no. 2, 327–354. MR 2342639, DOI 10.1007/s00222-007-0065-y
- Martin Kassabov, Subspace arrangements and property T, Groups Geom. Dyn. 5 (2011), no. 2, 445–477. MR 2782180, DOI 10.4171/GGD/134
- Martin Kassabov, Alexander Lubotzky, and Nikolay Nikolov, Finite simple groups as expanders, Proc. Natl. Acad. Sci. USA 103 (2006), no. 16, 6116–6119. MR 2221038, DOI 10.1073/pnas.0510337103
- Martin Kassabov and Nikolay Nikolov, Universal lattices and property tau, Invent. Math. 165 (2006), no. 1, 209–224. MR 2221141, DOI 10.1007/s00222-005-0498-0
- Martin Kassabov and Nikolay Nikolov, Cartesian products as profinite completions, Int. Math. Res. Not. , posted on (2006), Art. ID 72947, 17. MR 2264720, DOI 10.1155/IMRN/2006/72947
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
- Ottmar Loos and Erhard Neher, Steinberg groups for Jordan pairs, C. R. Math. Acad. Sci. Paris 348 (2010), no. 15-16, 839–842 (English, with English and French summaries). MR 2677976, DOI 10.1016/j.crma.2010.07.012
- Ottmar Loos and Erhard Neher, Steinberg groups for Jordan pairs, C. R. Math. Acad. Sci. Paris 348 (2010), no. 15-16, 839–842 (English, with English and French summaries). MR 2677976, DOI 10.1016/j.crma.2010.07.012
- A. Lubotzky and A. Zuk, On property $(\tau )$, book (unpublished), available at http://www.ma.huji.ac.il/ alexlub/
- M. Mimura, Strong algebraization of fixed point properties, preprint (2015), arXiv:1505.06728.
- Remus Nicoara, Sorin Popa, and Roman Sasyk, On $\textrm {II}_1$ factors arising from 2-cocycles of $w$-rigid groups, J. Funct. Anal. 242 (2007), no. 1, 230–246. MR 2274021, DOI 10.1016/j.jfa.2006.05.015
- Yehuda Shalom, Bounded generation and Kazhdan’s property (T), Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145–168 (2001). MR 1813225
- Yehuda Shalom, The algebraization of Kazhdan’s property (T), International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1283–1310. MR 2275645
- Zhiyong Shi, Groups graded by finite root systems, Tohoku Math. J. (2) 45 (1993), no. 1, 89–108. MR 1200882, DOI 10.2748/tmj/1178225956
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477 (Russian). MR 0472792
- J. Tits, Moufang octagons and the Ree groups of type $^{2}F_{4}$, Amer. J. Math. 105 (1983), no. 2, 539–594. MR 701569, DOI 10.2307/2374268
- L. N. Vaseršteĭn, Groups having the property $T$, Funkcional. Anal. i Priložen. 2 (1968), no. 2, 86 (Russian). MR 0228620
- Leonid Vaserstein, Bounded reduction of invertible matrices over polynomial rings by addition operations, preprint, 2007 (unpublished).
- Zezhou Zhang, Nonassociative algebras and groups with property $(T)$, Internat. J. Algebra Comput. 24 (2014), no. 3, 347–364. MR 3211907, DOI 10.1142/S0218196714500155