AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Mostly Surfaces
About this Title
Richard Evan Schwartz, Brown University, Providence, RI
Publication: The Student Mathematical Library
Publication Year
2011: Volume 60
ISBNs: 978-0-8218-5368-9 (print); 978-1-4704-1223-4 (online)
DOI: http://dx.doi.org/10.1090/stml/060
MathSciNet review: MR2809109
MSC: Primary 57-01; Secondary 30-01, 30Fxx, 57N05
Table of Contents
Front/Back Matter
Chapters
- Chapter 1. Book overview
Part 1. Surfaces and topology
- Chapter 2. Definition of a surface
- Chapter 3. The gluing construction
- Chapter 4. The fundamental group
- Chapter 5. Examples of fundamental groups
- Chapter 6. Covering spaces and the deck group
- Chapter 7. Existence of universal covers
Part 2. Surfaces and geometry
- Chapter 8. Euclidean geometry
- Chapter 9. Spherical geometry
- Chapter 10. Hyperbolic geometry
- Chapter 11. Riemannian metrics on surfaces
- Chapter 12. Hyperbolic surfaces
Part 3. Surfaces and complex analysis
- Chapter 13. A primer on complex analysis
- Chapter 14. Disk and plane rigidity
- Chapter 15. The Schwarz-Christoffel transformation
- Chapter 16. Riemann surfaces and uniformization
Part 4. Flat cone surfaces
- Chapter 17. Flat cone surfaces
- Chapter 18. Translation surfaces and the Veech group
Part 5. The totality of surfaces
- Chapter 19. Continued fractions
- Chapter 20. Teichmüller space and moduli space
- Chapter 21. Topology of Teichmüller space
Part 6. Dessert
- Chapter 22. The Banach–Tarski theorem
- Chapter 23. Dehn’s dissection theorem
- Chapter 24. The Cauchy rigidity theorem