A new method for producing large Carmichael numbers
Author:
H. Dubner
Journal:
Math. Comp. 53 (1989), 411414
MSC:
Primary 11A51; Secondary 11Y11
MathSciNet review:
969484
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A new method for producing large threecomponent Carmichael numbers is derived. Only two primes must be found simultaneously instead of three as in the "standard" method. For each set of two primes many third primes can be found. Several Carmichael numbers with more than 3000 digits are shown, with the largest having 3710 digits.
 [1]
John
Brillhart, D.
H. Lehmer, and J.
L. Selfridge, New primality criteria and
factorizations of 2^{𝑚}±1, Math.
Comp. 29 (1975),
620–647. MR 0384673
(52 #5546), http://dx.doi.org/10.1090/S00255718197503846731
 [2]
Jack
Chernick, On Fermat’s simple
theorem, Bull. Amer. Math. Soc.
45 (1939), no. 4,
269–274. MR
1563964, http://dx.doi.org/10.1090/S00029904193906953X
 [3]
H. Dubner, Letter to S. S. Wagstaff, Jr., dated August 13, 1985.
 [4]
H. Dubner & R. Dubner, "The development of a powerful lowcost computer for number theory applications," J. Recreational Math., v. 18, no. 2, 19851986, pp. 8186.
 [5]
Donald
E. Knuth, The art of computer programming. Vol. 2, 2nd ed.,
AddisonWesley Publishing Co., Reading, Mass., 1981. Seminumerical
algorithms; AddisonWesley Series in Computer Science and Information
Processing. MR
633878 (83i:68003)
 [6]
Samuel
S. Wagstaff Jr., Large Carmichael numbers, Math. J. Okayama
Univ. 22 (1980), no. 1, 33–41. MR 573668
(82c:10007)
 [7]
Dale
Woods and Joel
Huenemann, Larger Carmichael numbers, Comput. Math. Appl.
8 (1982), no. 3, 215–216. MR 662584
(83f:10017), http://dx.doi.org/10.1016/08981221(82)90044X
 [1]
 J. Brillhard, D. H. Lehmer & J. L. Selfridge, "New primality criteria and factorizations of 1," Math. Comp., v. 29, 1975, pp. 620647. MR 0384673 (52:5546)
 [2]
 J. Chernick, "On Fermat's simple theorem," Bull. Amer. Math. Soc., v. 45, 1939, pp. 269274. MR 1563964
 [3]
 H. Dubner, Letter to S. S. Wagstaff, Jr., dated August 13, 1985.
 [4]
 H. Dubner & R. Dubner, "The development of a powerful lowcost computer for number theory applications," J. Recreational Math., v. 18, no. 2, 19851986, pp. 8186.
 [5]
 D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms, 2nd ed., AddisonWesley, Reading, Mass., 1981, pp. 278299. MR 633878 (83i:68003)
 [6]
 S. S. Wagstaff, Jr., "Large Carmichael numbers," Math. J. Okayama Univ., v. 22, 1980, pp. 3341. MR 573668 (82c:10007)
 [7]
 S. Woods & J. Huenemann, "Larger Carmichael numbers," Comput. Math. Appl., v. 8, no. 3, 1982, pp. 215216. MR 662584 (83f:10017)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11A51,
11Y11
Retrieve articles in all journals
with MSC:
11A51,
11Y11
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198909694848
PII:
S 00255718(1989)09694848
Article copyright:
© Copyright 1989
American Mathematical Society
