Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An equation alternately of retarded and advanced type


Authors: Kenneth L. Cooke and Joseph Wiener
Journal: Proc. Amer. Math. Soc. 99 (1987), 726-732
MSC: Primary 34K20; Secondary 34K05, 34K15
DOI: https://doi.org/10.1090/S0002-9939-1987-0877047-8
MathSciNet review: 877047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a differential equation with the argument $ 2[(t + 1)/2]$, where $ [ \cdot ]$ denotes the greatest-integer function. The argument deviation $ \tau (t) = t - 2[(t + 1)/2]$ is a function of period 2 and equals $ t$ for $ - 1 \leqslant t < 1$. It changes its sign in each interval $ 2n - 1 \leqslant t < 2n + 1$.


References [Enhancements On Off] (What's this?)

  • [1] A. R. Aftabizadeh and J. Wiener, Oscillatory properties of first order linear functional differential equations, Applicable Anal. 20 (1985), 165-187. MR 814948 (87d:34108)
  • [2] S. Busenberg and K. L. Cooke, Models of vertically transmitted diseases with sequential-continuous dynamics, Nonlinear Phenomena in Mathematical Sciences (V. Lakshmikantham, Ed.), Academic Press, New York, 1982, pp. 179-187.
  • [3] K. L. Cooke and J. Wiener, Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl. 99 (1984), 265-297. MR 732717 (85d:34072)
  • [4] S. M. Shah and J. Wiener, Advanced differential equations with piecewise constant argument deviations, Internat. J. Math. Math. Sci. 6 (1983), 671-703. MR 729389 (85e:34077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K20, 34K05, 34K15

Retrieve articles in all journals with MSC: 34K20, 34K05, 34K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0877047-8
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society