Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

An equation alternately of retarded and advanced type


Authors: Kenneth L. Cooke and Joseph Wiener
Journal: Proc. Amer. Math. Soc. 99 (1987), 726-732
MSC: Primary 34K20; Secondary 34K05, 34K15
MathSciNet review: 877047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a differential equation with the argument $ 2[(t + 1)/2]$, where $ [ \cdot ]$ denotes the greatest-integer function. The argument deviation $ \tau (t) = t - 2[(t + 1)/2]$ is a function of period 2 and equals $ t$ for $ - 1 \leqslant t < 1$. It changes its sign in each interval $ 2n - 1 \leqslant t < 2n + 1$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K20, 34K05, 34K15

Retrieve articles in all journals with MSC: 34K20, 34K05, 34K15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0877047-8
PII: S 0002-9939(1987)0877047-8
Article copyright: © Copyright 1987 American Mathematical Society