Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Probabilistic aspects of Al-Salam--Chihara polynomials


Authors: Wlodzimierz Bryc, Wojciech Matysiak and Pawel\ J. Szablowski
Journal: Proc. Amer. Math. Soc. 133 (2005), 1127-1134
MSC (2000): Primary 33D45; Secondary 05A30, 15A15, 42C05
DOI: https://doi.org/10.1090/S0002-9939-04-07593-8
Published electronically: September 16, 2004
MathSciNet review: 2117214
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We solve the connection coefficient problem between the Al-Salam--Chihara polynomials and the $q$-Hermite polynomials, and we use the resulting identity to answer a question from probability theory. We also derive the distribution of some Al-Salam--Chihara polynomials, and compute determinants of related Hankel matrices.


References [Enhancements On Off] (What's this?)

  • [AI84] Richard Askey and Mourad Ismail. Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc., 49(300):iv+108, 1984. MR 85g:33008
  • [ASC76] W. A. Al-Salam and T. S. Chihara. Convolutions of orthonormal polynomials. SIAM J. Math. Anal., 7(1):16-28, 1976. MR 53:3381
  • [Ask89] Richard Askey. Continuous $q$-Hermite polynomials when $q>1$. In $q$-series and partitions (Minneapolis, MN, 1988), volume 18 of IMA Vol. Math. Appl., pages 151-158. Springer, New York, 1989. MR 90h:33019
  • [BI96] Christian Berg and Mourad E. H. Ismail. $q$-Hermite polynomials and classical orthogonal polynomials. Canad. J. Math., 48(1):43-63, 1996. MR 97b:33020
  • [Bry01] W\lodzimierz Bryc. Stationary random fields with linear regressions. Annals of Probability, 29:504-519, 2001. MR 2002d:60014
  • [Car56] L. Carlitz. Some polynomials related to theta functions. Ann. Mat. Pura Appl. (4), 41:359-373, 1956. MR 17:1205e
  • [Fre71] Géza Freud. Orthogonal Polynomials. Pergamon Press, Oxford, 1971.
  • [IM94] M. E. H. Ismail and D. R. Masson. $q$-Hermite polynomials, biorthogonal rational functions, and $q$-beta integrals. Trans. Amer. Math. Soc., 346(1):63-116, 1994. MR 96a:33022
  • [IRS99] Mourad E. H. Ismail, Mizan Rahman, and Dennis Stanton. Quadratic $q$-exponentials and connection coefficient problems. Proc. Amer. Math. Soc., 127(10):2931-2941, 1999. MR 2000a:33027
  • [IS88] Mourad E. H. Ismail and Dennis Stanton. On the Askey-Wilson and Rogers polynomials. Canad. J. Math., 40(5):1025-1045, 1988. MR 89m:33003
  • [IS97] Mourad E. H. Ismail and Dennis Stanton. Classical orthogonal polynomials as moments. Canad. J. Math., 49(3):520-542, 1997. MR 98f:33033
  • [IS02] Mourad E. H. Ismail and Dennis Stanton. $q$-integral and moment representations for $q$-orthogonal polynomials. Canad. J. Math., 54(4):709-735, 2002. MR 2003k:33024
  • [ISV87] M. E. H. Ismail, D. Stanton, and G. Viennot. The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral. Europ. J. Combinatorics, 8:379-392, 1987. MR 89h:33015
  • [Kra99] Christian Krattenthaler. Advanced determinant calculus. Sém. Lothar. Combin., 42:Art. B42q, 67 pp. (electronic), 1999. MR 2002i:05013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33D45, 05A30, 15A15, 42C05

Retrieve articles in all journals with MSC (2000): 33D45, 05A30, 15A15, 42C05


Additional Information

Wlodzimierz Bryc
Affiliation: Department of Mathematics, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio 45221–0025
Email: Wlodzimierz.Bryc@UC.edu

Wojciech Matysiak
Affiliation: Faculty of Mathematics and Information Science, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warszawa, Poland
Email: wmatysiak@elka.pw.edu.pl

Pawel\ J. Szablowski
Affiliation: Faculty of Mathematics and Information Science, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warszawa, Poland
Email: pszablowski@elka.pw.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-04-07593-8
Keywords: $q$-Hermite polynomials, matrix of moments, orthogonal polynomials, determinants, polynomial regression
Received by editor(s): April 22, 2003
Received by editor(s) in revised form: November 30, 2003
Published electronically: September 16, 2004
Additional Notes: This research was partially supported by NSF grant #INT-0332062.
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society