Critical lengths for semilinear singular parabolic mixed boundary value problems

Authors:
C. Y. Chan and Shannon S. Cobb

Journal:
Quart. Appl. Math. **49** (1991), 497-506

MSC:
Primary 35B05; Secondary 35B50, 35K60

DOI:
https://doi.org/10.1090/qam/1121682

MathSciNet review:
MR1121682

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**A. Acker and B. Kawohl,*Remarks on quenching*, Nonlinear Anal.**13**, 53-61 (1989) MR**973368****[2]**A. Acker and W. Walter,*The quenching problem for nonlinear parabolic differential equations*, Lecture Notes in Math., Vol. 564, Springer-Verlag, New York, 1976, pp. 1-12 MR**0604032****[3]**A. Acker and W. Walter,*On the global existence of solutions of parabolic differential equations with a singular nonlinear term*, Nonlinear Anal.**2**, 499-505 (1978) MR**512487****[4]**C. Y. Chan and C. S. Chen,*A numerical method for semilinear singular parabolic quenching problems*, Quart. Appl. Math.**47**, 45-57 (1989) MR**987894****[5]**C. Y. Chan and C. S. Chen,*Critical lengths for global existence of solutions for coupled semilinear singular parabolic problems*, Quart. Appl. Math.**47**, 661-671 (1989) MR**1031683****[6]**C. Y. Chan and H. G. Kaper,*Quenching for semilinear singular parabolic problems*, SIAM J. Math. Anal.**20**, 558-566 (1989) MR**990863****[7]**C. Y. Chan and M. K. Kwong,*Existence results of steady-states of semilinear reaction-diffusion equations and their applications*, J. Differential Equations**77**, 304-321 (1989) MR**983297****[8]**A. Friedman,*Partial Differential Equations of Parabolic Type*, Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 26-27, 82-84 and 155 MR**0181836****[9]**H. Kawarada,*On solutions of initial-boundary problem for*, Publ. Res. Inst. Math. Sci.**10**, 729-736 (1975) MR**0385328****[10]**H. A. Levine and J. T. Montgomery,*The quenching of solutions of some nonlinear parabolic equations*, SIAM J. Math. Anal.**11**, 842-847 (1980) MR**586912****[11]**G. N. Polozhiy,*Equations of Mathematical Physics*, Hayden, New York, 1967, p. 413**[12]**M. H. Protter and H. F. Weinberger,*Maximum Principles in Differential Equations*, Springer-Verlag, New York, 1984, pp. 168-172 and 175 MR**762825****[13]**H. L. Royden,*Real Analysis*, 2nd ed., Macmillan, New York, 1968, p. 84 MR**0151555**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35B05,
35B50,
35K60

Retrieve articles in all journals with MSC: 35B05, 35B50, 35K60

Additional Information

DOI:
https://doi.org/10.1090/qam/1121682

Article copyright:
© Copyright 1991
American Mathematical Society