Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Hypergeometric generating function of $ L$-function, Slater's identities, and quantum invariant


Authors: K. Hikami and A. N. Kirillov
Original publication: Algebra i Analiz, tom 17 (2005), nomer 1.
Journal: St. Petersburg Math. J. 17 (2006), 143-156
MSC (2000): Primary 11B65, 57M27, 05A30, 11F23
DOI: https://doi.org/10.1090/S1061-0022-06-00897-1
Published electronically: January 19, 2006
MathSciNet review: 2140679
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Relationships between the quantum invariants of the torus knots $ \mathcal{T}_{3,2^k}$ and some $ q$-series identities are studied. In particular, new generalizations of the Slater identities (83) and (86) are obtained.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, The theory of partitions, Encyclopedia Math. Appl., vol. 2, Addison-Wesley, Reading, MA, 1976. MR 0557013 (58:27738)
  • 2. -, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267-283. MR 0757501 (86c:11084)
  • 3. G. E. Andrews, J. Jiménez-Urroz, and K. Ono, $ q$-series identities and values of certain $ L$-functions, Duke Math. J. 108 (2001), 395-419. MR 1838657 (2002e:11055)
  • 4. G. E. Andrews, A. Knopfmacher, P. Paule, and H. Prodinger, $ q$-Engel series expansions and Slater's identities, Quaest. Math. 24 (2001), 403-416. MR 1883662 (2003d:33045)
  • 5. G. E. Andrews and J. P. O. Santos, Rogers-Ramanujan type identities for partitions with attached odd parts, Ramanujan J. 1 (1997), 91-99. MR 1607530 (98k:11143)
  • 6. W. N. Bailey, On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (3) 1 (1951), 217-221. MR 0043839 (13:327a)
  • 7. A. G. Bytsko and A. Fring, Factorized combinations of Virasoro characters, Comm. Math. Phys. 209 (2000), 179-205. MR 1736946 (2001a:11073)
  • 8. A. Cappelli, C. Itzykson and J.-B. Zuber, Modular invariant partition functions in two dimensions, Nuclear Phys. B 280 (1987), 445-465. MR 0881119 (88i:81132)
  • 9. G. H. Coogan and K. Ono, A $ q$-series identity and the arithmetic of Hurwitz zeta functions, Proc. Amer. Math. Soc. 131 (2003), 719-724. MR 1937408 (2003j:11017)
  • 10. L. D. Faddeev and R. M. Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434. MR 1264393 (95i:11150)
  • 11. K. Hikami, Volume conjecture and asymptotic expansion of $ q$-series, Experiment. Math. 12 (2003), 319-337. MR 2034396 (2005b:57024)
  • 12. -, Difference equation of the colored Jones polynomial for the torus knot, math.GT/0403224 (2004).
  • 13. -, $ q$-series and $ L$-functions related to half-derivatives of the Andrews-Gordon identity, Ramanujan J. (2004) (to appear).
  • 14. -, Quantum invariant for torus link and modular forms, Comm. Math. Phys. 246 (2004), 403-426. MR 2048564 (2005f:11095)
  • 15. K. Hikami and A. N. Kirillov, Torus knot and minimal model, Phys. Lett. B 575 (2003), 343-348. MR 2044711 (2005b:57025)
  • 16. C. Itzykson and J.-B. Zuber, Two-dimensional conformal invariant theories on a torus, Nuclear Phys. B 275 (1986), 580-616. MR 0865230 (88f:81111)
  • 17. R. M. Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), 1409-1418. MR 1341338 (96j:81060)
  • 18. R. Lawrence and L. Rozansky, Witten-Reshetikhin-Turaev invariants of Seifert manifolds, Comm. Math. Phys. 205 (1999), 287-314. MR 1712599 (2001e:58029)
  • 19. R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), 93-107. MR 1701924 (2000j:11057)
  • 20. J. Lovejoy and K. Ono, Hypergeometric generating functions for values of Dirichlet and other $ L$-functions, Proc. Natl. Acad. Sci. USA 100 (2003), 6904-6909. MR 1982655 (2004h:33037)
  • 21. H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), 85-104. MR 1828373 (2002b:57005)
  • 22. K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and $ q$-series, CBMS Regional Conf. Ser. in Math., No. 102, Amer. Math. Soc., Providence, RI, 2004. MR 2020489 (2005c:11053)
  • 23. A. Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, Vertex Operators in Mathematics and Physics (Berkeley, CA, 1983) (J. Lepowsky, S. Mandelstam, and J. Singer, eds.), Math. Sci. Res. Inst. Publ., No. 3, Springer, New York, 1985, pp. 451-473. MR 0781391 (87b:17011)
  • 24. L. J. Slater, Further identity of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167. MR 0049225 (14:138e)
  • 25. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. MR 0990772 (90h:57009)
  • 26. D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960. MR 1860536 (2002g:11055)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 11B65, 57M27, 05A30, 11F23

Retrieve articles in all journals with MSC (2000): 11B65, 57M27, 05A30, 11F23


Additional Information

K. Hikami
Affiliation: Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7–3–1, Bunkyo, Tokyo 113–0033, Japan
Email: hikami@phys.s.u-tokyo.ac.jp

A. N. Kirillov
Affiliation: Research Institute of Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502, Japan
Email: kirillov@kurims.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S1061-0022-06-00897-1
Keywords: Knot invariants, Virasoro minimal models, Slater's identities
Received by editor(s): September 7, 2004
Published electronically: January 19, 2006
Dedicated: Dedicated to Ludwig Dmitrievich Faddeev on the occasion of his seventieth birthday
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society