Asymptotic Geometric Analysis, Part I
About this Title
Shiri Artstein-Avidan, Tel Aviv University, Tel Aviv, Israel, Apostolos Giannopoulos, University of Athens, Athens, Greece and Vitali D. Milman, Tel Aviv University, Tel Aviv, Israel
Publication: Mathematical Surveys and Monographs
Publication Year:
2015; Volume 202
ISBNs: 978-1-4704-2193-9 (print); 978-1-4704-2345-2 (online)
DOI: https://doi.org/http://dx.doi.org/10.1090/surv/202
MathSciNet review: MR3331351
MSC: Primary 52A21; Secondary 28Axx, 46-02, 46Bxx, 52A23, 52A40
Table of Contents
Front/Back Matter
Chapters
- Chapter 1. Convex bodies: Classical geometric inequalities
- Chapter 2. Classical positions of convex bodies
- Chapter 3. Isomorphic isoperimetric inequalities and concentration of measure
- Chapter 4. Metric entropy and covering numbers estimates
- Chapter 5. Almost Euclidean subspaces of finite dimensional normed spaces
- Chapter 6. The $\ell $-position and the Rademacher projection
- Chapter 7. Proportional theory
- Chapter 8. $M$-position and the reverse Brunn-Minkowski inequality
- Chapter 9. Gaussian approach
- Chapter 10. Volume distribution in convex bodies
- Appendix A. Elementary convexity
- Appendix B. Advanced convexity