Grid Homology for Knots and Links
About this Title
Peter S. Ozsváth, Princeton University, Princeton, NJ, András I. Stipsicz, Renyi Institute of Mathematics, Budapest, Hungary and Zoltán Szabó, Princeton University, Princeton, NJ
Publication: Mathematical Surveys and Monographs
Publication Year:
2015; Volume 208
ISBNs: 978-1-4704-1737-6 (print); 978-1-4704-2739-9 (online)
DOI: https://doi.org/http://dx.doi.org/10.1090/surv/208
MathSciNet review: MR3381987
MSC: Primary 57M27; Secondary 53D10, 57M25, 57R17, 57R58
Table of Contents
Front/Back Matter
Chapters
- Chapter 1. Introduction
- Chapter 2. Knots and links in $S^3$
- Chapter 3. Grid diagrams
- Chapter 4. Grid homology
- Chapter 5. The invariance of grid homology
- Chapter 6. The unknotting number and $\tau $
- Chapter 7. Basic properties of grid homology
- Chapter 8. The slice genus and $\tau $
- Chapter 9. The oriented skein exact sequence
- Chapter 10. Grid homologies of alternating knots
- Chapter 11. Grid homology for links
- Chapter 12. Invariants of Legendrian and transverse knots
- Chapter 13. The filtered grid complex
- Chapter 14. More on the filtered chain complex
- Chapter 15. Grid homology over the integers
- Chapter 16. The holomorphic theory
- Chapter 17. Open problems