Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Local Operators in Integrable Models I

About this Title

Michio Jimbo, Rikkyo University, Tokyo, Japan, Tetsuji Miwa, Kyoto University, Kyoto, Japan and Fedor Smirnov, CNRS, Paris, France

Publication: Mathematical Surveys and Monographs
Publication Year: 2021; Volume 256
ISBNs: 978-1-4704-6552-0 (print); 978-1-4704-6576-6 (online)
DOI: https://doi.org/10.1090/surv/256

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • H. Bethe. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain). Zeitschrift für Physik, 71 (1931), 205–226.
  • L. Onsager. Two-dimensional model with an order-disorder transition. Phys. Rev., 65 (1944), 117–149.
  • L. Onsager. The Ising model in two dimensions. In Critical phenomena in alloys, magnets and superconducters, 3–12. McGraw-Hill, New York, 1971.
  • C. N. Yang and C. P. Yang. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 10 (1969), 1115–1122.
  • E. Lieb. Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett., 18 (1967), 692–694.
  • B. Sutherland. Exact solution of a two-dimensional model for hydrogen-bonded crystals. Phys. Rev. Lett., 19 (1967), 103–104.
  • R. Baxter. Partition function of the eight-vertex lattice model. Ann. Physics, 70 (1972), 193–228.
  • R. Baxter. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I, II, III. Ann. Physics, 76 (1973), 1–24, 25–47, 48–71.
  • R. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press, London, 1982.
  • C. Gardner, J. Greene, M. Kruskal, and R. Miura. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett., 19 (1967), 1095–1097.
  • P. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21 (1968), 467–490.
  • V. Zakharov and L. Faddeev. Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct. Anal. Appl., 5 (1971), 18–27.
  • L. Faddeev and L. Takhtajan. Essentially nonlinear one-dimensional model of classical field theory. Teor. Mat. Fiz., 21 (1974), 160–174.
  • L. Faddeev and V. Korepin. Quantum theory of solitons. Physics Reports, 42 (1978), 1–87.
  • S. Coleman. Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D, 11 (1975), 2088–2097.
  • S. Mandelstam. Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D, 11 (1975), 3026–3030.
  • A. Zamolodchikov. Exact two-particle S-matrix of quantum sine-Gordon solitons. Commun. Math. Phys., 55 (1977), 183–186.
  • A. Zamolodchikov and Al. Zamolodchikov. Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Physics, 120 (1979), 253–291.
  • E. Sklyanin, L. Takhtajan, and L. Faddeev. Quantum inverse problem method. Theoret. and Math. Phys., 40 (1979), 194–220.
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin. Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge, 1993.
  • P. Kulish and N. Reshetikhin. Quantum linear problem for the sine-Gordon equation and higher representations. Zapiski Nauch. Sem. LOMI, 101 (1980), 101–110.
  • V. Drinfeld. Quantum Groups. In Proceedings of the International Congress of Mathematicians, 798–820, Berkeley, 1990.
  • M. Jimbo. A $q$-difference analogue of $U(\mathfrak {g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10 (1985), 63–69.
  • F. Smirnov. Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore, 1992.
  • M. Jimbo and T. Miwa. Algebraic Analysis of Solvable Lattice Models. 85. Amer. Math. Soc., 1995.
  • N. Kitanine, J.-M. Maillet, and V. Terras. Correlation functions of the XXZ Heisenberg spin-$\frac {1}{2}$-chain in a magnetic field. Nucl. Phys. B, 567 (2000), 554–582.
  • F. Göhmann, A. Klümper, and A. Seel. Integral representations for correlation functions of the XXZ chain at finite temperature. J. Phys. A, 37 (2004), 7625–7656.
  • N. Slavnov. Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz. Theoret. and Math. Phys., 79 (1989), 502–508.
  • V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys., 177 (1996), 381–398.
  • V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal field theory II. Q-operator and DDV equation. Commun. Math. Phys., 190 (1997), 247–278.
  • V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal field theory III. the Yang-Baxter relation. Commun. Math. Phys., 200 (1999), 297–324.
  • H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama. Hidden Grassmann structure in the XXZ model. Commun. Math. Phys., 272 (2007), 263–281.
  • H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama. Hidden Grassmann structure in the XXZ model II. Creation operators. Commun. Math. Phys., 286 (2009), 875–932.
  • M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the XXZ model III: Introducing Matsubara direction. J. Phys. A, 42 (2009), 304018.
  • H. Boos, M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the XXZ model IV: CFT limit. Commun. Math. Phys., 299 (2010), 825–866.
  • M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the XXZ model V: sine-Gordon model. Lett. Math. Phys., 96 (2011), 325–365.
  • M. Takahashi. Half-filled Hubbard model at low temperature. J. Phys. C, 10 (1977), 1289–1301.
  • H. Boos and V. Korepin. Quantum spin chains and Riemann zeta functions with odd arguments. J. Phys. A, 34 (2001), 5311–5316.
  • J. Sato, M. Shiroishi, and M. Takahashi. Correlation functions of the spin-1/2 anti-ferromagnetic Heisenberg chain: exact calculation via the generating function. Nucl. Phys. B, 729 (2005), 441–466.
  • S. Lukyanov. Low energy effective hamiltonian for the XXZ spin chain. Nucl. Phys. B, 522 (1998), 533–549.
  • S. Lukyanov and V. Terras. Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain. Nucl. Phys. B, 654 (2003), 323–356.
  • H. Boos, F. Göhmann, A. Klümper, and J. Suzuki. Factorization of the finite temperature correlation functions of the XXZ chain in a magnetic field. J. Phys. A, 40 (2007), 10699–10728.
  • S. Lukyanov and A. Zamolodchikov. Exact expectation values of local fields in quantum sine-Gordon model. Nucl. Phys. B, 493 (1997), 571–587.
  • V. Fateev, D. Fradkin, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov. Expectation values of descendent fields in the sine-Gordon model. Nucl. Phys. B, 540 (1999), 587–609.
  • Al. Zamolodchikov. Mass scale in sine-Gordon model and its reductions. Int. J. Mod. Phys. A, 10 (1995), 1125–1150.
  • M. Jimbo and T. Miwa. Quantum Knizhnik-Zamolodchikov equation at $|q|=1$ and correlation functions of the XXZ model in the gapless regime. J. Phys. A, 29 (1996), 2923–2958.
  • A. Klümper. Free energy and correlation length of quantum chains related to restricted solid-on-solid lattice models. Annalen der Physik, 1 (1992), 540–553.
  • M. Suzuki. Transfer matrix method and Monte Carlo simulation in quantum spin systems. Phys. Rev. B, 31 (1985), 2957–2965.
  • C. Holzhey, F. Larsen, and F. Wilczek. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B, 424 (1994), 443–467.
  • V. Korepin. Universality of entropy scaling in one dimensional gapless models. Phys. Rev. Lett., 92 (2004), 096402.
  • P. Calabrese and J. Cardy. Entanglement entropy and conformal field theory. J. Phys. A, 42 (2009), 504005–504036.
  • M. Gaudin. La Fonction d’Onde de Bethe. Masson, Paris, 1983.
  • A. Izergin. Partition function of a six-vertex model in a finite volume. Sov. Phys. Dokl., 32 (1987), 878–879.
  • C. Jantzen. Lectures on Quantum Groups. Amer. Math. Soc., 1996.
  • G. Lusztig. Introduction to Quantum Groups. Birkhäuser, Boston, 1993.
  • S. Khoroshkin and V. Tolstoy. Universal $R$ matrix for quantized (super) algebras. Commun. Math. Phys., 141 (1991), 599–617.
  • E. Frenkel and D. Hernandez. Baxter’s relations and spectra of quantum integrable models. Duke Math. J., 164 (2015), 2407–2460.
  • L. Faddeev and A. Volkov. The quantum method of the inverse problem on a discrete space time. Theoret. and Math. Phys., 92 (1992), 837–842.
  • P. Kulish, N. Reshetikhin, and E. K. Sklyanin. Yang-Baxter equation and representation theory I. Lett. Math. Phys., 5 (1981), 393–403.
  • M. Jimbo. Introduction to the Yang-Baxter equation. Int. J. Mod. Phys. A, 4 (1989), 3759–3777.
  • A. Klümper, M. Batchelor, and P. Pearce. Central charges of the 6- and 19-vertex models with twisted boundary conditions. J. Phys. A, 24 (1991), 3111–3133.
  • C. Destri and H. de Vega. Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories. Nucl. Phys. B, 438 (1995), 413–454.
  • H. Boos, M. Jimbo, T. Miwa, and F. Smirnov. Completeness of a fermionic basis in the homogeneous XXZ model. J. Math. Phys., 50 (2009), 095206.
  • H. Boos and F. Göhmann. On the physical part of the factorized correlation functions of the XXZ chain. J. Phys. A, 42 (2009), 1–27.
  • M. Mori and M. Sugihara. The double-exponential transformation in numerical analysis. J. Comput. Appl. Math., 127 (2001), 287–296.
  • T. Ooura. Double exponential quadratures for various kinds of integral. Talk given at Second International ACCA-JP/UK Workshop, January 19, 2016 Kyoto University.
  • N. Kitanine, J.-M. Maillet, N. Slavnov, and V. Terras. Emptiness formation probability of the XXZ Heisenberg spin-$\frac {1}{2}$-chain at $\Delta =1/2$. J. Phys. A, 35 (2002), L385–L391.
  • N. Reshetikhin and F. Smirnov. Hidden quantum group symmetry and integrable perturbations of conformal field theories. Commun. Math. Phys., 131 (1990), 157–177.
  • M. Jimbo, T. Miwa, and Y. Takeyama. Counting minimal form factors of the restricted sine-Gordon model. Moscow J. Math., 4 (2004), 787–846.
  • E. Sklyanin. Some algebraic structures connected with the Yang-Baxter equation. Funct. Anal. Appl., 16 (1982), 27–34.
  • E. Sklyanin. Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras. Funct. Anal. Appl., 17 (1983), 34–48.
  • H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama. Traces on the Sklyanin algebra and correlation functions of the eight-vertex model. J. Phys. A, 38 (2005), 7629–7659.
  • A. Odesskii and B. Feigin. Sklyanin elliptic algebra. Funct. Anal. Appl., 23 (1990), 207–214.
  • A. Odesskii. Elliptic algebras. Russian Math. Surveys, 57 (2002), 1–50.
  • N. Slavnov, A. Zabrodin, and A. Zotov. Scalar products of Bethe vectors in the 8-vertex model. JHEP, 06 (2020), 123.
  • B. Dubrovin. Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl., 9 (1975), 61–62.
  • A. Its and V. Matveev. Hill’s operator with finitely many gaps. Funct. Anal. Appl. (1975), pages 65–66.
  • A. Its. Canonical systems with finite-gap spectrum and periodical solutions of non-linear Schrödinger equation. Vestn. LGU. Ser. matem., 7 (1976), 121–129.
  • B. Dubrovin, V. Matveev, and S. Novikov. Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surveys, 31 (1976), 59–146.
  • H. Flashka and D. McLaughlin. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55 (1976), 438–456.
  • D. Mumford. Tata Lectures on Theta II. Modern Birkhäuser Classics book series. Birkhäuser, Boston, 2007.
  • E. Sklyanin. Quantum version of the method of inverse scattering problem. J. Soviet Math., 19 (1982), 1546–1596.
  • S. Kovalevskaya. Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math., 12 (1889), 177–232.